LSSLP - Local structure sensitive label propagation
Zhu, Zhenfeng1,2; Cheng, Jian3; Zhao, Yao1,2; Ye, Jieping4
2016-03-01
发表期刊INFORMATION SCIENCES
卷号332页码:19-32
文章类型Article
摘要Label propagation is an approach to iteratively spread the prior state of label confidence associated with each of samples to its neighbors until achieving a global convergence state. Such process has been shown to hold close connection with a general graph-based regularization framework. Within this framework, a closed- form linear system can be built to carry out label propagation. In this paper, to address several issues inherent with previous graph-based label propagation framework, we propose a reformulated one, i.e., local structure sensitive label propagation (LSSLP). By associating each graph vertex with a local structure sensitive tuning factor, the empirical loss error on each vertex can be controlled preferably to keep consistent with the commonly preconditioned 'cluster assumption' of data structure. Out of consideration for information conservation, we relax the state conservation constraint of label confidence from labeled samples proposed by Belkin etal. (2004) to a more general form. Meanwhile, an inverse-warping procedure is incorporated into the proposed local structure sensitive label propagation framework to maintain large and stable enough classification margin. Based on the felicitous inversion technique for blocked matrix, we extend LSSLP to its incremental and inductive versions and also present computationally efficient implementation of it. Experimental results demonstrate the performance of the reformulated regularization framework for label propagation is much competitive. (C) 2015 Elsevier Inc. All rights reserved.
关键词Machine Learning Semi-supervised Learning Label Propagation Pattern Classification Graph Model
WOS标题词Science & Technology ; Technology
DOI10.1016/j.ins.2015.11.007
关键词[WOS]CLASSIFICATION
收录类别SCI
语种英语
项目资助者National Basic Research Program of China(2012CB316400) ; National Natural Science Foundation of China(61172129 ; Program for Changjiang Scholars and Innovative Research Team in University(IRT201206) ; Program for New Century Excellent Talents in University(13-0661) ; Fundamental Research Funds for the Central Universities(2015JBM039) ; 61532005 ; 61572068)
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000367106800002
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10650
专题模式识别国家重点实验室_图像与视频分析
作者单位1.Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
2.Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
4.Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
推荐引用方式
GB/T 7714
Zhu, Zhenfeng,Cheng, Jian,Zhao, Yao,et al. LSSLP - Local structure sensitive label propagation[J]. INFORMATION SCIENCES,2016,332:19-32.
APA Zhu, Zhenfeng,Cheng, Jian,Zhao, Yao,&Ye, Jieping.(2016).LSSLP - Local structure sensitive label propagation.INFORMATION SCIENCES,332,19-32.
MLA Zhu, Zhenfeng,et al."LSSLP - Local structure sensitive label propagation".INFORMATION SCIENCES 332(2016):19-32.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Zhenfeng]的文章
[Cheng, Jian]的文章
[Zhao, Yao]的文章
百度学术
百度学术中相似的文章
[Zhu, Zhenfeng]的文章
[Cheng, Jian]的文章
[Zhao, Yao]的文章
必应学术
必应学术中相似的文章
[Zhu, Zhenfeng]的文章
[Cheng, Jian]的文章
[Zhao, Yao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。