Exploring Entrainment Patterns of Human Emotion in Social Media
He, Saike1; Zheng, Xiaolong1; Zeng, Daniel1,2; Luo, Chuan1; Zhang, Zhu1
2016-03-08
发表期刊PLOS ONE
卷号11期号:3页码:e0150630
文章类型Article
摘要Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.
WOS标题词Science & Technology
DOI10.1371/journal.pone.0150630
URL查看原文
收录类别SCI ; SSCI
语种英语
项目资助者National Natural Science Foundation of China(71402177 ; National Institutes of Health (NIH) of the United States of America(1R01DA037378-01) ; Ministry of Health(2013ZX10004218 ; National Institutes of Health (NIH) of USA(1R01DA037378-01) ; 71472175 ; 2012ZX10004801) ; 71025001 ; 61175040 ; 71103180)
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000371991300037
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10772
专题复杂系统管理与控制国家重点实验室_互联网大数据与信息安全
通讯作者Zheng, Xiaolong
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.Univ Arizona, Dept Management Informat Syst, Tucson, AZ 85721 USA
推荐引用方式
GB/T 7714
He, Saike,Zheng, Xiaolong,Zeng, Daniel,et al. Exploring Entrainment Patterns of Human Emotion in Social Media[J]. PLOS ONE,2016,11(3):e0150630.
APA He, Saike,Zheng, Xiaolong,Zeng, Daniel,Luo, Chuan,&Zhang, Zhu.(2016).Exploring Entrainment Patterns of Human Emotion in Social Media.PLOS ONE,11(3),e0150630.
MLA He, Saike,et al."Exploring Entrainment Patterns of Human Emotion in Social Media".PLOS ONE 11.3(2016):e0150630.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
journal.pone.0150630(1152KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Saike]的文章
[Zheng, Xiaolong]的文章
[Zeng, Daniel]的文章
百度学术
百度学术中相似的文章
[He, Saike]的文章
[Zheng, Xiaolong]的文章
[Zeng, Daniel]的文章
必应学术
必应学术中相似的文章
[He, Saike]的文章
[Zheng, Xiaolong]的文章
[Zeng, Daniel]的文章
相关权益政策
暂无数据
收藏/分享
文件名: journal.pone.0150630.PDF
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。