kNN Hashing with Factorized Neighborhood Representation
Kun Ding1; Chunlei Huo1
2015
会议名称ICCV
会议录名称ICCV
会议日期December 13-16
会议地点Santiago, Chile
摘要Hashing is very effective for many tasks in reducing the
processing time and in compressing massive databases. Although
lots of approaches have been developed to learn
data-dependent hash functions in recent years, how to learn
hash functions to yield good performance with acceptable
computational and memory cost is still a challenging problem.
Based on the observation that retrieval precision is
highly related to the kNN classification accuracy, this paper
proposes a novel kNN-based supervised hashing method,
which learns hash functions by directly maximizing the kNN
accuracy of the Hamming-embedded training data. To make
it scalable well to large problem, we propose a factorized
neighborhood representation to parsimoniously model the
neighborhood relationships inherent in training data. Considering
that real-world data are often linearly inseparable,
we further kernelize this basic model to improve its performance.
As a result, the proposed method is able to learn
accurate hashing functions with tolerable computation and
storage cost. Experiments on four benchmarks demonstrate
that our method outperforms the state-of-the-arts.
关键词Factorized Neighborhood Representation
收录类别EI
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/10849
专题模式识别国家重点实验室_先进数据分析与学习
通讯作者Kun Ding
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Kun Ding,Chunlei Huo. kNN Hashing with Factorized Neighborhood Representation[C],2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Ding_kNN_Hashing_Wit(1158KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kun Ding]的文章
[Chunlei Huo]的文章
百度学术
百度学术中相似的文章
[Kun Ding]的文章
[Chunlei Huo]的文章
必应学术
必应学术中相似的文章
[Kun Ding]的文章
[Chunlei Huo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Ding_kNN_Hashing_With_ICCV_2015_paper.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。