An adaptive graph model for automatic image annotation
Jing Liu; Mingjing Li; Wei-Ying Ma; Qingshan Liu; Hanqing Lu
2006
会议名称ACM SIGMM International Workshop on Multimedia Information Retrieval
会议录名称Proceedings of the 8th ACM SIGMM International Workshop on Multimedia Information Retrieval
会议日期October 26-27, 2006
会议地点Santa Barbara, California, USA
摘要Automatic keyword annotation is a promising solution to enable more effective image search by using keywords. In this paper, we propose a novel automatic image annotation method based on manifold ranking learning, in which the visual and textual information are well integrated. Due to complex and unbalanced data distribution and limited prior information in practice, we design two new schemes to make manifold ranking efficient for image annotation. Firstly, we design a new scheme named the Nearest Spanning Chain (NSC) to generate an adaptive similarity graph, which is robust across data distribution and easy to implement. Secondly, the word-to-word correlations obtained from WordNet and the pairwise co-occurrence are taken into consideration to expand the annotations and prune irrelevant annotations for each image. Experiments conducted on standard Corel dataset and web image dataset demonstrate the effectiveness and efficiency of the proposed method for image annotation.
关键词Image Annotation Image Retrieval Manifold Ranking
收录类别EI
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11065
专题模式识别国家重点实验室_图像与视频分析
通讯作者Jing Liu
推荐引用方式
GB/T 7714
Jing Liu,Mingjing Li,Wei-Ying Ma,et al. An adaptive graph model for automatic image annotation[C],2006.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jing Liu]的文章
[Mingjing Li]的文章
[Wei-Ying Ma]的文章
百度学术
百度学术中相似的文章
[Jing Liu]的文章
[Mingjing Li]的文章
[Wei-Ying Ma]的文章
必应学术
必应学术中相似的文章
[Jing Liu]的文章
[Mingjing Li]的文章
[Wei-Ying Ma]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。