CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking
Hu, Weiming1; Gao, Jin1; Xing, Junliang1; Zhang, Chao1; Maybank, Stephen2; Weiming Hu
2017
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号39期号:1页码:172-188
文章类型Article
摘要An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning-based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
关键词Discriminant Tracking Tensor Samples Semi-supervised Learning Graph Embedding Space
WOS标题词Science & Technology ; Technology
DOI10.1109/TPAMI.2016.2539944
关键词[WOS]OBJECT TRACKING ; DIMENSIONALITY REDUCTION ; REPRESENTATION ; FRAMEWORK
收录类别SCI
语种英语
项目资助者973 basic research program of China(2014CB349303) ; Natural Science Foundation of China(61472421 ; Strategic Priority Research Program of the CAS(XDB02070003) ; 61370185)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000390421300015
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/11102
专题模式识别国家重点实验室_视频内容安全
通讯作者Weiming Hu
作者单位1.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
2.Birkbeck Coll, Dept Comp Sci & Informat Syst, Malet St, London WC1E 7HX, England
推荐引用方式
GB/T 7714
Hu, Weiming,Gao, Jin,Xing, Junliang,et al. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2017,39(1):172-188.
APA Hu, Weiming,Gao, Jin,Xing, Junliang,Zhang, Chao,Maybank, Stephen,&Weiming Hu.(2017).Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,39(1),172-188.
MLA Hu, Weiming,et al."Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 39.1(2017):172-188.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
PAMI16SSTrack.pdf(7133KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Weiming]的文章
[Gao, Jin]的文章
[Xing, Junliang]的文章
百度学术
百度学术中相似的文章
[Hu, Weiming]的文章
[Gao, Jin]的文章
[Xing, Junliang]的文章
必应学术
必应学术中相似的文章
[Hu, Weiming]的文章
[Gao, Jin]的文章
[Xing, Junliang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: PAMI16SSTrack.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。