Chinese Short Text Classification Based on Domain Knowledge
Xiao Feng1; Yang Shen2; Chengyong Liu3; Wei Liang1; Shuwu Zhang1
2013-10
Conference NameInternational Joint Conference on Natural Language Processing
Source PublicationIn Proceedings of the 6th International Joint Conference on Natural Language Processing(IJCNLP), pp. 859–863
Conference Date2013-10-14
Conference PlaceNagoya, Japan
Abstract
People  are  generating  more  and  more  short texts.  There  is  an  urgent  demand  to  classify short  texts  into  different  domains.  Due  to  the shortness  and  sparseness  of  short  texts,  con-ventional  methods  based  on  Vector  Space Model  (VSM)  have  limitations.  To  tackle  the data scarcity problem, we propose a new mod-
el to directly measure the correlation between a  short  text  instance  and  a  domain  instead  of representing short texts as vectors of weights. We  firstly  draw  domain  knowledge  for  each user-defined  domain  using  an  external  corpus 
of longer documents. Secondly, the correlation is  calculated  by  measuring  the  proportion  of the  overlapping  part  of  the  instance  and  the domain  knowledge.  Finally,  if  the  correlation is greater than a threshold, the instance will be classified  into  the  domain.  Experimental  results show that the classifier based on the proposed  model  outperforms  the  state-of-the-art baselines based on VSM. 
KeywordText Classification Short Text Domain Knowledge
Indexed By其他
Document Type会议论文
Identifierhttp://ir.ia.ac.cn/handle/173211/11229
Collection数字内容技术与服务研究中心_新媒体服务与管理技术
Affiliation1.Institute of Automation Chinese Academy of Science
2.State Administration for Industry & Commerce of the People's Republic of China
3.Information Center of General Administration of Press and Publication of PR China
Recommended Citation
GB/T 7714
Xiao Feng,Yang Shen,Chengyong Liu,et al. Chinese Short Text Classification Based on Domain Knowledge[C],2013.
Files in This Item: Download All
File Name/Size DocType Version Access License
Xiao Feng IJCNLP2013(248KB)会议论文 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Xiao Feng]'s Articles
[Yang Shen]'s Articles
[Chengyong Liu]'s Articles
Baidu academic
Similar articles in Baidu academic
[Xiao Feng]'s Articles
[Yang Shen]'s Articles
[Chengyong Liu]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Xiao Feng]'s Articles
[Yang Shen]'s Articles
[Chengyong Liu]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Xiao Feng IJCNLP2013.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.