CASIA OpenIR  > 脑网络组研究中心
Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease
Yang, Zhen1; Ye, Chuyang2,3; Bogovic, John A.4; Carass, Aaron1,5; Jedynak, Bruno M.6; Ying, Sarah H.7; Prince, Jerry L.1,5,6,7; Zhen Yang
2016-02-15
发表期刊NEUROIMAGE
卷号127期号:1页码:435-444
文章类型Article
摘要The cerebellum plays an important role in both motor control and cognitive function. Cerebellar function is topographically organized and diseases that affect specific parts of the cerebellum are associated with specific patterns of symptoms. Accordingly, delineation and quantification of cerebellar sub-regions from magnetic resonance images are important in the study of cerebellar atrophy and associated functional losses. This paper describes an automated cerebellar lobule segmentation method based on a graph cut segmentation framework. Results from multi-atlas labeling and tissue classification contribute to the region terms in the graph cut energy function and boundary classification contributes to the boundary term in the energy function. A cerebellar parcellation is achieved by minimizing the energy function using the a-expansion technique. The proposed method was evaluated using a leave-one-out cross-validation on 15 subjects including both healthy controls and patients with cerebellar diseases. Based on reported Dice coefficients, the proposed method outperforms two state-of-the-art methods. The proposed method was then applied to 77 subjects to study the region-specific cerebellar structural differences in three spinocerebellar ataxia (SCA) genetic subtypes. Quantitative analysis of the lobule volumes shows distinct patterns of volume changes associated with different SCA subtypes consistent with known patterns of atrophy in these genetic subtypes. (C) 2015 Elsevier Inc. All rights reserved.
关键词Cerebellum Cerebellar Lobule Segmentation Graph Cuts Magnetic Resonance Imaging Multi-atlas Labeling Random Forest Classifier Spinocerebellar Ataxia
WOS标题词Science & Technology ; Life Sciences & Biomedicine
DOI10.1016/j.neuroimage.2015.09.032
关键词[WOS]IMAGE SEGMENTATION ; HUNTINGTONS-DISEASE ; STATISTICAL FUSION ; LABEL-FUSION ; GRAPH CUTS ; BRAIN ; ATLAS ; ATROPHY ; PERFORMANCE ; DEGENERATION
收录类别SCI
语种英语
项目资助者NIH/NINDS(5R01NS056307-08)
WOS研究方向Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000369952900037
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/11341
专题脑网络组研究中心
通讯作者Zhen Yang
作者单位1.Johns Hopkins Univ, Dept Elect & Comp Engn, 105 Barton Hall,3400 N Charles St, Baltimore, MD 21218 USA
2.Chinese Acad Sci, Brainnetome Ctr, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
4.Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA 20147 USA
5.Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
6.Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
7.Johns Hopkins Sch Med, Dept Radiol, Baltimore, MD 21287 USA
推荐引用方式
GB/T 7714
Yang, Zhen,Ye, Chuyang,Bogovic, John A.,et al. Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease[J]. NEUROIMAGE,2016,127(1):435-444.
APA Yang, Zhen.,Ye, Chuyang.,Bogovic, John A..,Carass, Aaron.,Jedynak, Bruno M..,...&Zhen Yang.(2016).Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease.NEUROIMAGE,127(1),435-444.
MLA Yang, Zhen,et al."Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease".NEUROIMAGE 127.1(2016):435-444.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
NI2.pdf(1387KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Zhen]的文章
[Ye, Chuyang]的文章
[Bogovic, John A.]的文章
百度学术
百度学术中相似的文章
[Yang, Zhen]的文章
[Ye, Chuyang]的文章
[Bogovic, John A.]的文章
必应学术
必应学术中相似的文章
[Yang, Zhen]的文章
[Ye, Chuyang]的文章
[Bogovic, John A.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: NI2.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。