Analyzing the Segmentation Granularity of RTB Advertising Markets: A Computational Experiment Approach
Qin, Rui; Yuan, Yong; Wang, Fei-Yue; Li, Juanjuan; Rui Qin
2015-11
会议名称National Conference of Social Media Processing (SMP2015)
会议录名称Social Media Processing
会议日期Nov. 16-17, 2015
会议地点Guangzhou, China
摘要Real Time Bidding (RTB) is an emerging business model of online computational advertising with the rise of Internet and big data. It can help advertisers achieve the precision marketing through evolving the traditional business logic from buying ad-impressions to directly buying the matched target audiences. As an important part of RTB markets, Demand Side Platforms (DSPs) play a critical role in matching advertisers with their target audiences via market segmentation, and their segmentation strategies (especially the choice of granularity) have key influences in improving the efficiency of RTB markets. This paper studied DSPs' strategies for market segmentation, and established a selection model of the granularity for segmenting RTB markets. We proposed to validate our model using a computational experiment approach, and the experimental results show that the market segmentation granularity has the potential of improving both the total revenue of all the advertisers and the expected revenue for each advertiser.
关键词Real Time Bidding Demand Side Platforms Market Segmentation Granularity Computational Experiments Precision Marketing
收录类别EI
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11567
专题复杂系统管理与控制国家重点实验室_先进控制与自动化
通讯作者Rui Qin
推荐引用方式
GB/T 7714
Qin, Rui,Yuan, Yong,Wang, Fei-Yue,et al. Analyzing the Segmentation Granularity of RTB Advertising Markets: A Computational Experiment Approach[C],2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
qin.pdf(2254KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qin, Rui]的文章
[Yuan, Yong]的文章
[Wang, Fei-Yue]的文章
百度学术
百度学术中相似的文章
[Qin, Rui]的文章
[Yuan, Yong]的文章
[Wang, Fei-Yue]的文章
必应学术
必应学术中相似的文章
[Qin, Rui]的文章
[Yuan, Yong]的文章
[Wang, Fei-Yue]的文章
相关权益政策
暂无数据
收藏/分享
文件名: qin.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。