CASIA OpenIR  > 毕业生  > 博士学位论文
三维重建中的算法研究
张明
学位类型工学博士
导师吴福朝
2016-05-31
学位授予单位中国科学院大学
学位授予地点北京
学位专业模式识别与智能系统
关键词Cayley 变换 摄像机自标定 分层重建 直线三角化 基本矩阵估计
其他摘要
        摄像机标定是三维重建中的基本问题。自标定方法的灵活性使得它是摄像机
标定中的重要研究方向。其中,基于分层重建方法和基于绝对对偶二次曲面方法
是较为成熟和广泛应用的自标定方法。然而,这两种方法对图像噪声较为敏感且
计算复杂性较高。图像中直线特征相对于点特征更为鲁棒,因此直线重建也是三
维重建中的重要研究方向。本文讨论如何提高自标定算法的精度和直线三角化算
法的精度,主要工作概括如下: 
        1. 基于 Cayley 变换的摄像机自标定算法。在摄像机内参数固定的假设下,
基于无穷远 Cayley 变换(ICT),提出了无穷远平面法向量的新约束方程。然后
基于这些新约束和 ICT 的射影表示,提出了两种自标定算法,分别是分层 Cayley
算法和整体 Cayley 算法。这两种算法相比传统算法具有更高的标定精度。 
        2. 基于绝对对偶二次曲面(ADQ)的线性自标定算法。对于内参数变化的
情形,提出了一种线性自标定算法。首先通过分析 ADQ 射影表达中关于内参数
和无穷远平面法向量的高次项之间的关系,将 ADQ 的二次约束方程变换为多变
量的线性方程,然后通过求解线性方程组实现了自标定。所提出的算法不仅提高
计算精度,也极大地降低了计算复杂性。 
        3. 直线三角化算法和三维直线的距离度量。首先,提出了一种新的线性直线
三角化算法。然后,利用拉格朗日乘子法,提出了两种基于代数误差最小化的优
化算法和一种基于几何误差最小化的迭代算法。为了更准确评估三角化方法中直
线估计的 3D 误差,提出了两种新的三维直线空间中的距离度量。 
        4. 基本矩阵估计的快速鲁棒算法。首先采用具有几何意义的重投影误差准则,
评估基本矩阵的估计。然后通过分析外点的概率分布,基于概率统计理论提出了
新的外点检测策略。所提出的算法不仅能得到鲁棒和精确的估计,而且减少了计
算时间。 
;
Camera  calibration  is  a  fundamental  problem  in  3D  reconstruction.  Due  to  the 
flexibility of self-calibration, it is an important research topic in camera calibration. 
Stratified  reconstruction  and  Absolute  Dual  Quadric  based  self-calibration  methods 
are  two  mature  and  widely  used  self-calibration  techniques  in  computer  vision. 
However,  these  methods  are  of  high  sensitivity  to  image  noise  and  of  high 
computation complexity. Line feature is more robust than point feature; therefore line 
reconstruction  is  also  an  important  research  topic  in  3D  reconstruction.  This  thesis 
discusses how to increase the accuracy of camera self-calibration algorithms and line 
reconstruction algorithms. The main work is summarized as follows: 
1.  Cayley  transform  based  camera  self-calibration  algorithm.  Under  the 
assumption  of  constant  camera  intrinsic  parameters,  new  constraints  on  the  normal 
vector of infinite plane are proposed based on Infinite Cayley Transformation (ICT). 
Then, a stratified Cayley algorithm and a total Cayley algorithm are proposed based 
on the new constraints and the projective expression of ICT. Both the two algorithms 
have higher calibration accuracy than classic algorithms. 
2. Absolute Dual Quadric (ADQ) based linear self-calibration algorithm. For the 
situation of varying camera intrinsic parameters, a linear self-calibration algorithm is 
proposed.  Through  analyzing  the  relationship  of  high  order  terms  between  camera 
intrinsic parameters and normal vector of infinite plane in the projective expression of 
ADQ,  the  quadratic  constraints  on  ADQ  are  transformed  to  multi-variable  linear 
equations.  Then  by  solving  the  linear  equation  groups,  camera  self-calibration  is 
fulfilled. The proposed algorithm increases the calibration accuracy and decreases the 
computation time. 
3.  Line  triangulation  and  metric  of  3D  lines.  First  of  all,  a  new  linear  line 
triangulation algorithm is proposed. Then, using the Lagrange multiplier method, two 
algebraic  error  minimization  based  optimal  algorithms  and  a  geometric  error 
minimization based iterative algorithm are proposed. In addition, to more accurately 
assess the 3D estimation error in line triangulation methods, two new metrics in 3D 
line space are proposed. 
4.  Fast  and  robust  algorithm  for  fundamental  matrix  estimation.  First  of  all, 
re-projection  error  which  has  specific  geometric  meaning  is  adopted  to  assess  the 
estimation  of  fundamental  matrix.  Then  through  analyzing  the  probabilistic 
distribution of outliers, a new strategy for outlier detection is obtained based on the 
probability  and  statistics  theory.  The  algorithm  has  more  accurate  and  robust 
estimation as well as less computation time. 

语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/11665
专题毕业生_博士学位论文
作者单位中国科学院自动化研究所模式识别实验室
推荐引用方式
GB/T 7714
张明. 三维重建中的算法研究[D]. 北京. 中国科学院大学,2016.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
毕业论文 201118014628070(4697KB)学位论文 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张明]的文章
百度学术
百度学术中相似的文章
[张明]的文章
必应学术
必应学术中相似的文章
[张明]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。