CASIA OpenIR  > 智能感知与计算研究中心
Learning Symmetry Features for Face Detection Based on Sparse Group Lasso
Qi Li; Zhenan Sun; Ran He(赫然); Tieniu Tan; Li, Qi
2013-11
会议名称Chinese Conference on Biometric Recognition
会议录名称Chinese Conference on Biometric Recognition
会议日期2013年11月16-17日
会议地点Jinan, China
摘要
Face detection is of fundamental importance in face recognition, facial expression recognition and other face biometrics related applications. The core problem of face detection is to select a subset of features from massive local appearance descriptors such as Haar features and LBP. This paper proposes a two stage feature selection method for face detection. Firstly, feature representation of the symmetric characteristics of face pattern is formulated as a structured sparsity problem and sparse group lasso is used to select the most effective local features for face detection. Secondly, minimal redundancy maximal relevance is used to remove the redundant features in group sparsity learning. Experimental results demonstrate that the proposed feature selection method has better generalization ability than Adaboost and Lasso based feature selection methods for face detection problems.
关键词Face Detection Sparse Group Lasso Minimal Redundancy Maximal Relevance
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11679
专题智能感知与计算研究中心
通讯作者Li, Qi
作者单位Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Qi Li,Zhenan Sun,Ran He,et al. Learning Symmetry Features for Face Detection Based on Sparse Group Lasso[C],2013.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
chp%3A10.1007%2F978-(262KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi Li]的文章
[Zhenan Sun]的文章
[Ran He(赫然)]的文章
百度学术
百度学术中相似的文章
[Qi Li]的文章
[Zhenan Sun]的文章
[Ran He(赫然)]的文章
必应学术
必应学术中相似的文章
[Qi Li]的文章
[Zhenan Sun]的文章
[Ran He(赫然)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: chp%3A10.1007%2F978-3-319-02961-0_20.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。