CASIA OpenIR  > 智能感知与计算研究中心
Representation Learning of Temporal Dynamics for Skeleton-Based Action Recognition
Du, Yong1; Fu, Yun2,3; Wang, Liang1,4
2016-07-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号25期号:7页码:3010-3022
文章类型Article
摘要Motion characteristics of human actions can be represented by the position variation of skeleton joints. Traditional approaches generally extract the spatial-temporal representation of the skeleton sequences with well-designed hand-crafted features. In this paper, in order to recognize actions according to the relative motion between the limbs and the trunk, we propose an end-to-end hierarchical RNN for skeleton-based action recognition. We divide human skeleton into five main parts in terms of the human physical structure, and then feed them to five independent subnets for local feature extraction. After the following hierarchical feature fusion and extraction from local to global, dimensions of the final temporal dynamics representations are reduced to the same number of action categories in the corresponding data set through a single-layer perceptron. In addition, the output of the perceptron is temporally accumulated as the input of a softmax layer for classification. Random scale and rotation transformations are employed to improve the robustness during training. We compare with five other deep RNN variants derived from our model in order to verify the effectiveness of the proposed network. In addition, we compare with several other methods on motion capture and Kinect data sets. Furthermore, we evaluate the robustness of our model trained with random scale and rotation transformations for a multiview problem. Experimental results demonstrate that our model achieves the state-of-the-art performance with high computational efficiency.
关键词Action Recognition Hierarchical Recurrent Neural Network Random Scale & Rotation Transformations Skeleton
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2016.2552404
关键词[WOS]NETWORKS ; SEQUENCE
收录类别SCI
语种英语
项目资助者National Basic Research Program of China(2012CB316300) ; National Science Foundation(1314484) ; Strategic Priority Research Program within the Chinese Academy of Sciences(XDB02070100) ; National Natural Science Foundation of China(61525306 ; 61420106015)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000376087700006
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/11695
专题智能感知与计算研究中心
通讯作者Wang, Liang
作者单位1.Chinese Acad Sci, Inst Automat, Ctr Res Intelligent Percept & Comp, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Northeastern Univ, Dept Elect & Comp Engn, Coll Engn, Boston, MA 02115 USA
3.Northeastern Univ, Coll Comp & Informat Sci, Boston, MA 02115 USA
4.CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Du, Yong,Fu, Yun,Wang, Liang. Representation Learning of Temporal Dynamics for Skeleton-Based Action Recognition[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(7):3010-3022.
APA Du, Yong,Fu, Yun,&Wang, Liang.(2016).Representation Learning of Temporal Dynamics for Skeleton-Based Action Recognition.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(7),3010-3022.
MLA Du, Yong,et al."Representation Learning of Temporal Dynamics for Skeleton-Based Action Recognition".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.7(2016):3010-3022.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
TIP_paper_published.(4688KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Du, Yong]的文章
[Fu, Yun]的文章
[Wang, Liang]的文章
百度学术
百度学术中相似的文章
[Du, Yong]的文章
[Fu, Yun]的文章
[Wang, Liang]的文章
必应学术
必应学术中相似的文章
[Du, Yong]的文章
[Fu, Yun]的文章
[Wang, Liang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TIP_paper_published.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。