Collaborative Correlation Tracking
Zhu, Guibo1; Wang, Jinqiao1; Wu, Yi2; Lu, Hanqing1
2015
会议名称British Machine Computer Vision
会议录名称In proceedings of British Machine Computer Vision
会议日期September 7-10
会议地点Swansea, UK
摘要Correlation filter based tracking has attracted many researchers’ attention in recent years for high efficiency and robustness. Most existing works focus on exploiting different characteristics with correlation filters for visual tracking, e.g. circulant structure, kernel trick, effective feature representation and context information. However, how to handle the scale variation and the model drift is still an open problem. In this paper, we propose a collaborative correlation tracker to deal with the above problems. Firstly, we extend the correlation tracking filter by embedding the scale factor into the kernelized matrix to handle the scale variation. Then a novel long-term CUR filter for detection is learnt efficiently with random sampling to alleviate model drift by detecting effective object candidates in the collaborative tracker. In this way, the proposed approach could estimate the object state accurately and handle the model drift problem effectively. Extensive experiments show the superiority of the proposed method.
 
关键词Visual Tracking Collaborative Correlation Tracking
收录类别EI
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11756
专题模式识别国家重点实验室_图像与视频分析
通讯作者Wang, Jinqiao
作者单位1.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
2.B-DAT & CICAEET, School of Information & Control, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China
推荐引用方式
GB/T 7714
Zhu, Guibo,Wang, Jinqiao,Wu, Yi,et al. Collaborative Correlation Tracking[C],2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
bmvc_final.pdf(151KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Guibo]的文章
[Wang, Jinqiao]的文章
[Wu, Yi]的文章
百度学术
百度学术中相似的文章
[Zhu, Guibo]的文章
[Wang, Jinqiao]的文章
[Wu, Yi]的文章
必应学术
必应学术中相似的文章
[Zhu, Guibo]的文章
[Wang, Jinqiao]的文章
[Wu, Yi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: bmvc_final.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。