An SAD Algorithm based on SGMM and Phoneme Combination
Chen, Xiao; Xu, Bo
2015-12
会议名称International Conference on Computer Science and Network Technology
会议录名称Proceedings of the Fourth International Conference on Computer Science and Network Technology
会议日期19-20
会议地点Harbin
摘要
Speech activity detection (SAD) is the key preprocess of speech application. This paper proposed a subspace Gaussian mixture model (SGMM) and phoneme combination based SAD algorithm. This algorithm is efficient, small and can utilize speech recognition corpus directly. Results indicate that, compared with the baseline, our proposed method results in an absolute improvement of 4.9% frame error rate and 10% average hit rate, respectively. Our approach finally achieves a frame error rate of 5.1% and an average hit rate of 91.5%. The model size is just 809.5K.

 
关键词Speech Activity Detection Subspace Gaussian Mixture Model Phoneme Combination
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11824
专题数字内容技术与服务研究中心_听觉模型与认知计算
通讯作者Chen, Xiao
作者单位Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Chen, Xiao,Xu, Bo. An SAD Algorithm based on SGMM and Phoneme Combination[C],2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CID115_UID2274_PID23(237KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Xiao]的文章
[Xu, Bo]的文章
百度学术
百度学术中相似的文章
[Chen, Xiao]的文章
[Xu, Bo]的文章
必应学术
必应学术中相似的文章
[Chen, Xiao]的文章
[Xu, Bo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: CID115_UID2274_PID2345.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。