CASIA OpenIR  > 智能感知与计算研究中心
Real-World Gender Recognition Using Multi-order LBP and Localized Multi-Boost Learning
Cao Dong(曹冬); Ran He(赫然); Man Zhang; Zhenan Sun; Tieniu Tan
2015
会议名称IEEE International Conference on Identity, Security and Behavior Analysis
会议录名称IEEE International Conference on Identity, Security and Behavior Analysis
会议日期2015-3
会议地点Hong Kong
摘要This paper presents a new approach for real-world gender recognition, where images are captured under uncontrolled environments with various poses, illuminations and expressions. While a large number of gender recognition methods have been introduced in recent years, most of them describe each image in a single feature space or simple combination of multiple individual spaces, which can not be powerful enough to alleviate the noise in real-world scenarios. To address this, we propose exploring multiple order local binary patterns (MOLBP) as features for learning, and develop a localized multi-boost learning (LMBL) algorithm to combine the different features for classification. Experimental results show that the proposed algorithm outperforms state-of-the-art methods in two real-world. datasets.
关键词Gender Recognition Multiple Order Local Binary Patterns Multi-boost Learning
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11840
专题智能感知与计算研究中心
通讯作者Tieniu Tan
作者单位模式识别国家重点实验室, 中国科学院自动化研究所
推荐引用方式
GB/T 7714
Cao Dong,Ran He,Man Zhang,et al. Real-World Gender Recognition Using Multi-order LBP and Localized Multi-Boost Learning[C],2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Real-World Gender Re(1073KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao Dong(曹冬)]的文章
[Ran He(赫然)]的文章
[Man Zhang]的文章
百度学术
百度学术中相似的文章
[Cao Dong(曹冬)]的文章
[Ran He(赫然)]的文章
[Man Zhang]的文章
必应学术
必应学术中相似的文章
[Cao Dong(曹冬)]的文章
[Ran He(赫然)]的文章
[Man Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Real-World Gender Recognition Using Multi-order LBP and Localized Multi-Boost Learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。