Metric Embedded Discriminative Vocabulary Learning for High-Level Person Representation
Yang Yang(杨阳); Zhen Lei; Shifeng Zhang; Hailin Shi; Stan Z. Li; Yang Yang
2016-05
会议名称Association for the Advancement of Artificial Intelligence
会议录名称AAAI
会议日期2016, 02.12-02.17
会议地点Phoenix, USA
摘要
A variety of encoding methods for bag of word (BoW) model
have been proposed to encode the local features in image classification.
However, most of them are unsupervised and just
employ k-means to form the visual vocabulary, thus reducing
the discriminative power of the features. In this paper, we
propose a metric embedded discriminative vocabulary learning
for high-level person representation with application to
person re-identification. A new and effective term is introduced
which aims at making the same persons closer while
different ones farther in the metric space. With the learned
vocabulary, we utilize a linear coding method to encode the
image-level features (or holistic image features) for extracting
high-level person representation. Different from traditional
unsupervised approaches, our method can explore the relationship
(same or not) among the persons. Since there is
an analytic solution to the linear coding, it is easy to obtain
the final high-level features. The experimental results on person
re-identification demonstrate the effectiveness of our proposed
algorithm.
关键词Person Re-identification Metric Embedded Discriminative Vocabulary Learning High-level Person Representation
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11851
专题模式识别国家重点实验室_生物识别与安全技术研究
通讯作者Yang Yang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Yang Yang,Zhen Lei,Shifeng Zhang,et al. Metric Embedded Discriminative Vocabulary Learning for High-Level Person Representation[C],2016.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
AAAI16_MEDVL.pdf(1938KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang Yang(杨阳)]的文章
[Zhen Lei]的文章
[Shifeng Zhang]的文章
百度学术
百度学术中相似的文章
[Yang Yang(杨阳)]的文章
[Zhen Lei]的文章
[Shifeng Zhang]的文章
必应学术
必应学术中相似的文章
[Yang Yang(杨阳)]的文章
[Zhen Lei]的文章
[Shifeng Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: AAAI16_MEDVL.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。