Efficient Feature Coding Based on Auto-encoder Network for Image Classification
Xie, Guo-Sen; Zhang, Xu-Yao; Liu, Cheng-Lin
2014
会议名称Asian Conference on Computer Vision
会议录名称Procceding of ACCV 2014
会议日期2014-11
会议地点新加坡
摘要Local descriptor coding is one crucial step in traditional Bag
of Words (BoW) framework for image categorization. However, the slow
coding speed of previous methods is one limitation for applications in
large scale problems. Recently, neural network based models have been
widely applied in various classification tasks. Using neural network models for descriptor coding is straightforward and efficient due to their fast
forward propagation. In this paper, we propose to use the Auto-Encoder
(AE) network as a local descriptor coding block, and further embed AE
network in the BoW framework for the purpose of image classification.
To make the hidden activities of AE network to be both selective and
sparse, we add an efficient and effective regularization term into the learning process of AE network, which can promote sparsity of the hidden
layer for each input descriptor as well as the selectivity for each hidden
node. By incorporating the AE network coding with the BoW framework,
we can achieve better results and faster speeds than other state-of-theart feature coding methods on Caltech101, Scene15 and UIUC 8-Sports
databases.

关键词Feature Coding
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11957
专题模式识别国家重点实验室_模式分析与学习
通讯作者Xie, Guo-Sen
推荐引用方式
GB/T 7714
Xie, Guo-Sen,Zhang, Xu-Yao,Liu, Cheng-Lin. Efficient Feature Coding Based on Auto-encoder Network for Image Classification[C],2014.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
ACCV 14.pdf(622KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Guo-Sen]的文章
[Zhang, Xu-Yao]的文章
[Liu, Cheng-Lin]的文章
百度学术
百度学术中相似的文章
[Xie, Guo-Sen]的文章
[Zhang, Xu-Yao]的文章
[Liu, Cheng-Lin]的文章
必应学术
必应学术中相似的文章
[Xie, Guo-Sen]的文章
[Zhang, Xu-Yao]的文章
[Liu, Cheng-Lin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ACCV 14.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。