CASIA OpenIR  > 智能感知与计算研究中心
Information Theoretic Subspace Clustering
He, Ran1; Wang, Liang1; Sun, Zhenan1; Zhang, Yingya2; Li, Bo3; Bo LI
2016-12-01
发表期刊IEEE Transactions on Neural Networks and Learning Systems
卷号27期号:12页码:2643-2655
文章类型Article
摘要This paper addresses the problem of grouping the data points sampled from a union of multiple subspaces in the presence of outliers. Information theoretic objective functions are proposed to combine structured low-rank representations (LRRs) to capture the global structure of data and information theoretic measures to handle outliers. In theoretical part, we point out that group sparsity-induced measures (l(2,1)-norm, l(alpha)-norm, and correntropy) can be justified from the viewpoint of half-quadratic (HQ) optimization, which facilitates both convergence study and algorithmic development. In particular, a general formulation is accordingly proposed to unify HQ-based group sparsity methods into a common framework. In algorithmic part, we develop information theoretic subspace clustering methods via correntropy. With the help of Parzen window estimation, correntropy is used to handle either outliers under any distributions or sample-specific errors in data. Pairwise link constraints are further treated as a prior structure of LRRs. Based on the HQ framework, iterative algorithms are developed to solve the nonconvex information theoretic loss functions. Experimental results on three benchmark databases show that our methods can further improve the robustness of LRR subspace clustering and outperform other state-of-the-art subspace clustering methods.
关键词Correntropy Group Sparsity Low-rank Representation (Lrr) Subspace Clustering
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2015.2500600
关键词[WOS]FACE RECOGNITION ; SEGMENTATION ; CORRENTROPY ; REPRESENTATION ; MINIMIZATION ; RECOVERY ; SIGNAL
收录类别SCI
语种英语
项目资助者Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)(XDB02000000) ; State Key Laboratory of Software Development Environment(SKLSDE-2015ZX-14) ; National Basic Research Program of China(2012CB316300) ; National Natural Science Foundation of China(61473289 ; Youth Innovation Promotion Association through CAS(2015190) ; 61175003)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000388919600015
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12008
专题智能感知与计算研究中心
通讯作者Bo LI
作者单位1.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Ctr Res Intelligent Percept & Comp, Natl Lab Pattern Recognit,Inst Automat, Beijing 100190, Peoples R China
2.Alibaba Grp, Beijing 100190, Peoples R China
3.Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
He, Ran,Wang, Liang,Sun, Zhenan,et al. Information Theoretic Subspace Clustering[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,27(12):2643-2655.
APA He, Ran,Wang, Liang,Sun, Zhenan,Zhang, Yingya,Li, Bo,&Bo LI.(2016).Information Theoretic Subspace Clustering.IEEE Transactions on Neural Networks and Learning Systems,27(12),2643-2655.
MLA He, Ran,et al."Information Theoretic Subspace Clustering".IEEE Transactions on Neural Networks and Learning Systems 27.12(2016):2643-2655.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Information Theoreti(2269KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Ran]的文章
[Wang, Liang]的文章
[Sun, Zhenan]的文章
百度学术
百度学术中相似的文章
[He, Ran]的文章
[Wang, Liang]的文章
[Sun, Zhenan]的文章
必应学术
必应学术中相似的文章
[He, Ran]的文章
[Wang, Liang]的文章
[Sun, Zhenan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Information Theoretic Subspace Clustering.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。