CASIA OpenIR  > 空天信息研究中心
Invariant representation for blur and down-sampling transformations
Gu HX(谷鹄翔)1; Leibo Joel2; Anselmi Fabio2; Chunhong Pan1; Tomaso Poggio2
2016
会议名称IEEE International Conference on Image Processing
会议录名称2016 IEEE International Conference on Image Processing, 10.1109/ICIP.2016.7533029
会议日期2016.09.25-2016.09.28
会议地点Phonex, Arizona, USA
摘要Invariant representations of images can significantly reduce
the sample complexity of a classifier performing object identification
or categorization as shown in a recent analysis of
invariant representations for object recognition. In the case
of geometric transformations of images the theory [1] shows
how invariant signatures can be learned in a biologically plausible
way from unsupervised observations of the transformations
of a set of randomly chosen template images. Here we
extend the theory to non-geometric transformations such as
blur and down-sampling. The proposed algorithm achieve an
invariant representation via two simple biologically-plausible
steps: 1. compute normalized dot products of the input with
the stored transformations of each template, and 2. for each
template compute the statistics of the resulting set of values
such as the histogram or moments. The performance of our
system on challenging blurred and low resolution face matching
tasks exceeds the previous state-of-the-art by a large margin
which grows with increasing image corruption.
关键词Invariance Representation Down-samppling
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12034
专题空天信息研究中心
通讯作者Tomaso Poggio
作者单位1.CASIA
2.MIT
推荐引用方式
GB/T 7714
Gu HX,Leibo Joel,Anselmi Fabio,et al. Invariant representation for blur and down-sampling transformations[C],2016.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
blurInvariance_ICIP2(1180KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gu HX(谷鹄翔)]的文章
[Leibo Joel]的文章
[Anselmi Fabio]的文章
百度学术
百度学术中相似的文章
[Gu HX(谷鹄翔)]的文章
[Leibo Joel]的文章
[Anselmi Fabio]的文章
必应学术
必应学术中相似的文章
[Gu HX(谷鹄翔)]的文章
[Leibo Joel]的文章
[Anselmi Fabio]的文章
相关权益政策
暂无数据
收藏/分享
文件名: blurInvariance_ICIP2016.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。