CASIA OpenIR  > 脑网络组研究中心
Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles
Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah; Prince, Jerry
2016-03
会议名称SPIE Medical Imaging
会议录名称SPIE Medical Imaging
会议日期2016-2
会议地点San Diego, USA
摘要Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.
关键词Quality Assurance Segmentation Cerebellar Peduncles Outlier Detection Box-whisker Plot Classification
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12101
专题脑网络组研究中心
通讯作者Li, Ke
推荐引用方式
GB/T 7714
Li, Ke,Ye, Chuyang,Yang, Zhen,et al. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles[C],2016.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
SPIE_2016.pdf(554KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Ke]的文章
[Ye, Chuyang]的文章
[Yang, Zhen]的文章
百度学术
百度学术中相似的文章
[Li, Ke]的文章
[Ye, Chuyang]的文章
[Yang, Zhen]的文章
必应学术
必应学术中相似的文章
[Li, Ke]的文章
[Ye, Chuyang]的文章
[Yang, Zhen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: SPIE_2016.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。