CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Learning A Superpixel-Driven Speed Function for Level Set Tracking
Zhou, Xue1; Li, Xi2; Hu, Weiming3
2016-07-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
卷号46期号:7页码:1498-1510
文章类型Article
摘要A key problem in level set tracking is to construct a discriminative speed function for effective contour evolution. In this paper, we propose a level set tracking method based on a discriminative speed function, which produces a superpixel-driven force for effective level set evolution. Based on kernel density estimation and metric learning, the speed function is capable of effectively encoding the discriminative information on object appearance within a feasible metric space. Furthermore, we introduce adaptive object shape modeling into the level set evolution process, which leads to the tracking robustness in complex scenarios. To ensure the efficiency of adaptive object shape modeling, we develop a simple but efficient weighted non-negative matrix factorization method that can online learn an object shape dictionary. Experimental results on a number of challenging video sequences demonstrate the effectiveness and robustness of the proposed tracking method.
关键词Level Set Tracking Metric Learning Non-negative Matrix Factorization (Nf) Speed Function Superpixel (Sp)-driven
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2015.2451100
关键词[WOS]GEODESIC ACTIVE CONTOURS ; IMAGE SEGMENTATION ; MATRIX FACTORIZATION ; VISUAL TRACKING ; OBJECT TRACKING ; SHAPE PRIORS
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(NSFC 61472063 ; 973 Basic Research Program of China(2014CB349303) ; Fundamental Research Funds for the Central Universities(ZYGX 2011J076) ; China Knowledge Centre for Engineering Sciences and Technology ; National Basic Research Program of China(2012CB316400) ; Zhejiang Provincial Engineering Center on Media Data Cloud Processing and Analysis ; NVIDIA CUDA Research Center Program ; Microsoft Research Asia Collaborative Research Program ; MOE-Microsoft Key Laboratory, Zhejiang University ; 61472353)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000379757900002
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12153
专题模式识别国家重点实验室_视频内容安全
作者单位1.Univ Elect Sci & Technol China, Dept Automat Engn, Chengdu 611731, Peoples R China
2.Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Zhejiang, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Xue,Li, Xi,Hu, Weiming. Learning A Superpixel-Driven Speed Function for Level Set Tracking[J]. IEEE TRANSACTIONS ON CYBERNETICS,2016,46(7):1498-1510.
APA Zhou, Xue,Li, Xi,&Hu, Weiming.(2016).Learning A Superpixel-Driven Speed Function for Level Set Tracking.IEEE TRANSACTIONS ON CYBERNETICS,46(7),1498-1510.
MLA Zhou, Xue,et al."Learning A Superpixel-Driven Speed Function for Level Set Tracking".IEEE TRANSACTIONS ON CYBERNETICS 46.7(2016):1498-1510.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Learning a superpixe(2788KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Xue]的文章
[Li, Xi]的文章
[Hu, Weiming]的文章
百度学术
百度学术中相似的文章
[Zhou, Xue]的文章
[Li, Xi]的文章
[Hu, Weiming]的文章
必应学术
必应学术中相似的文章
[Zhou, Xue]的文章
[Li, Xi]的文章
[Hu, Weiming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Learning a superpixel-driven speed function for level set tracking (1).pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。