CASIA OpenIR  > 智能感知与计算研究中心
Representative Vector Machines: A Unified Framework for Classical Classifiers
Gui, Jie1,2; Liu, Tongliang3,4; Tao, Dacheng3,4; Sun, Zhenan2; Tan, Tieniu2
2016-08-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
卷号46期号:8页码:1877-1888
文章类型Article
摘要Classifier design is a fundamental problem in pattern recognition. A variety of pattern classification methods such as the nearest neighbor (NN) classifier, support vector machine (SVM), and sparse representation-based classification (SRC) have been proposed in the literature. These typical and widely used classifiers were originally developed from different theory or application motivations and they are conventionally treated as independent and specific solutions for pattern classification. This paper proposes a novel pattern classification framework, namely, representative vector machines (or RVMs for short). The basic idea of RVMs is to assign the class label of a test example according to its nearest representative vector. The contributions of RVMs are twofold. On one hand, the proposed RVMs establish a unified framework of classical classifiers because NN, SVM, and SRC can be interpreted as the special cases of RVMs with different definitions of representative vectors. Thus, the underlying relationship among a number of classical classifiers is revealed for better understanding of pattern classification. On the other hand, novel and advanced classifiers are inspired in the framework of RVMs. For example, a robust pattern classification method called discriminant vector machine (DVM) is motivated from RVMs. Given a test example, DVM first finds its k-NNs and then performs classification based on the robust M-estimator and manifold regularization. Extensive experimental evaluations on a variety of visual recognition tasks such as face recognition (Yale and face recognition grand challenge databases), object categorization (Caltech-101 dataset), and action recognition (Action Similarity LAbeliNg) demonstrate the advantages of DVM over other classifiers.
关键词Discriminant Vector Machine (Dvm) Pattern Classification Representative Vector Machines (Rvms) Sparse Representation Support Vector Machines (Svms)
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2015.2457234
关键词[WOS]EXTREME LEARNING-MACHINE ; FEATURE LINE METHOD ; FACE RECOGNITION ; IMAGE CLASSIFICATION ; PATTERN-CLASSIFICATION ; SPARSE REPRESENTATION
收录类别SCI
语种英语
项目资助者National Basic Research Program of China(2012CB316300) ; National Science Foundation of China(61420106015 ; Post-Doctoral Science Foundation of China(2012M520021 ; Australian Research Council(FT-130101457 ; 61135002 ; 2013T60195) ; LP-140100569) ; 61272333 ; 61572463 ; 61273272)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000379984500015
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12160
专题智能感知与计算研究中心
作者单位1.Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China
3.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
4.Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
推荐引用方式
GB/T 7714
Gui, Jie,Liu, Tongliang,Tao, Dacheng,et al. Representative Vector Machines: A Unified Framework for Classical Classifiers[J]. IEEE TRANSACTIONS ON CYBERNETICS,2016,46(8):1877-1888.
APA Gui, Jie,Liu, Tongliang,Tao, Dacheng,Sun, Zhenan,&Tan, Tieniu.(2016).Representative Vector Machines: A Unified Framework for Classical Classifiers.IEEE TRANSACTIONS ON CYBERNETICS,46(8),1877-1888.
MLA Gui, Jie,et al."Representative Vector Machines: A Unified Framework for Classical Classifiers".IEEE TRANSACTIONS ON CYBERNETICS 46.8(2016):1877-1888.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Representative Vecto(1081KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Tao, Dacheng]的文章
百度学术
百度学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Tao, Dacheng]的文章
必应学术
必应学术中相似的文章
[Gui, Jie]的文章
[Liu, Tongliang]的文章
[Tao, Dacheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Representative Vector Machines A Unified Framework For Classical Classifiers.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。