Off-Policy Actor-Critic Structure for Optimal Control of Unknown Systems With Disturbances
Song, Ruizhuo1; Lewis, Frank L.2,3; Wei, Qinglai4; Zhang, Huaguang5
2016-05-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
卷号46期号:5页码:1041-1050
文章类型Article
摘要An optimal control method is developed for unknown continuous-time systems with unknown disturbances in this paper. The integral reinforcement learning (IRL) algorithm is presented to obtain the iterative control. Off-policy learning is used to allow the dynamics to be completely unknown. Neural networks are used to construct critic and action networks. It is shown that if there are unknown disturbances, off-policy IRL may not converge or may be biased. For reducing the influence of unknown disturbances, a disturbances compensation controller is added. It is proven that the weight errors are uniformly ultimately bounded based on Lyapunov techniques. Convergence of the Hamiltonian function is also proven. The simulation study demonstrates the effectiveness of the proposed optimal control method for unknown systems with disturbances.
关键词Adaptive Critic Designs Adaptive/approximate Dynamic Programming (Adp) Dynamic Programming Off-policy Optimal Control Unknown System
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2015.2421338
关键词[WOS]TIME NONLINEAR-SYSTEMS ; OPTIMAL TRACKING CONTROL ; ADAPTIVE OPTIMAL-CONTROL ; OPTIMAL-CONTROL SCHEME ; CONTROL DESIGN ; FEEDBACK-CONTROL ; LINEAR-SYSTEMS ; OUTPUT DATA ; ALGORITHM ; ITERATION
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61304079 ; Beijing Natural Science Foundation(4132078 ; China Post-Doctoral Science Foundation(2013M530527) ; Fundamental Research Funds for the Central Universities(FRF-TP-14-119A2) ; Open Research Project from The State Key Laboratory of Management and Control for Complex Systems(20120106 ; NSF(ECCS-1128050) ; Office of Naval Research(N00014-13-1-0562) ; Air Force Office of Scientific Research through the European Office of Aerospace Research and Development(13-3055) ; U.S. Army Research Office(W911NF-11-D-0001) ; China National Natural Science Foundation of China(61120106011) ; China Education Ministry Project 111(B08015) ; 61374105 ; 4143065) ; 20150104) ; 61433004)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000374989300001
引用统计
被引频次:47[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12209
专题复杂系统管理与控制国家重点实验室_平行控制
作者单位1.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
2.Univ Texas Arlington, UTA Res Inst, Ft Worth, TX 76118 USA
3.Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R China
4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
5.Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
推荐引用方式
GB/T 7714
Song, Ruizhuo,Lewis, Frank L.,Wei, Qinglai,et al. Off-Policy Actor-Critic Structure for Optimal Control of Unknown Systems With Disturbances[J]. IEEE TRANSACTIONS ON CYBERNETICS,2016,46(5):1041-1050.
APA Song, Ruizhuo,Lewis, Frank L.,Wei, Qinglai,&Zhang, Huaguang.(2016).Off-Policy Actor-Critic Structure for Optimal Control of Unknown Systems With Disturbances.IEEE TRANSACTIONS ON CYBERNETICS,46(5),1041-1050.
MLA Song, Ruizhuo,et al."Off-Policy Actor-Critic Structure for Optimal Control of Unknown Systems With Disturbances".IEEE TRANSACTIONS ON CYBERNETICS 46.5(2016):1041-1050.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Ruizhuo]的文章
[Lewis, Frank L.]的文章
[Wei, Qinglai]的文章
百度学术
百度学术中相似的文章
[Song, Ruizhuo]的文章
[Lewis, Frank L.]的文章
[Wei, Qinglai]的文章
必应学术
必应学术中相似的文章
[Song, Ruizhuo]的文章
[Lewis, Frank L.]的文章
[Wei, Qinglai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。