The Twist Tensor Nuclear Norm for Video Completion
Hu, Wenrui1; Tao, Dacheng2; Zhang, Wensheng1; Xie, Yuan1; Yang, Yehui1; Wensheng Zhang
2017-12-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号28期号:12页码:2961-2973
文章类型Article
摘要In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
关键词Low-rank Tensor Estimation (Lrte) Tensor Multirank Tensor Nuclear Norm (Tnn) Twist Tensor Video Completion
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2016.2611525
关键词[WOS]RANK ; IMAGE ; DECOMPOSITION ; REGULARIZATION ; APPROXIMATION ; FACTORIZATION ; FRAMEWORK
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61402480 ; Australian Research Council(DP-140102164 ; 61432008 ; FT-130101457 ; 61472423 ; LE-140100061) ; 61502495 ; 61532006)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000416261400010
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12255
专题精密感知与控制研究中心_人工智能与机器学习
通讯作者Wensheng Zhang
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
推荐引用方式
GB/T 7714
Hu, Wenrui,Tao, Dacheng,Zhang, Wensheng,et al. The Twist Tensor Nuclear Norm for Video Completion[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2017,28(12):2961-2973.
APA Hu, Wenrui,Tao, Dacheng,Zhang, Wensheng,Xie, Yuan,Yang, Yehui,&Wensheng Zhang.(2017).The Twist Tensor Nuclear Norm for Video Completion.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,28(12),2961-2973.
MLA Hu, Wenrui,et al."The Twist Tensor Nuclear Norm for Video Completion".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 28.12(2017):2961-2973.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
07579662.pdf(24685KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Wenrui]的文章
[Tao, Dacheng]的文章
[Zhang, Wensheng]的文章
百度学术
百度学术中相似的文章
[Hu, Wenrui]的文章
[Tao, Dacheng]的文章
[Zhang, Wensheng]的文章
必应学术
必应学术中相似的文章
[Hu, Wenrui]的文章
[Tao, Dacheng]的文章
[Zhang, Wensheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 07579662.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。