Nonlocal image denoising via adaptive tensor nuclear norm minimization
Zhang, Chenyang1; Hu, Wenrui2; Jin, Tianyu1; Mei, Zhonglei1; Chenyang Zhang
2018
发表期刊NEURAL COMPUTING & APPLICATIONS
卷号29期号:1页码:3-19
文章类型Article
摘要Nonlocal self-similarity shows great potential in image denoising. Therefore, the denoising performance can be attained by accurately exploiting the nonlocal prior. In this paper, we model nonlocal similar patches through the multi-linear approach and then propose two tensor-based methods for image denoising. Our methods are based on the study of low-rank tensor estimation (LRTE). By exploiting low-rank prior in the tensor presentation of similar patches, we devise two new adaptive tensor nuclear norms (i.e., ATNN-1 and ATNN-2) for the LRTE problem. Among them, ATNN-1 relaxes the general tensor N-rank in a weighting scheme, while ATNN-2 is defined based on a novel tensor singular-value decomposition (t-SVD). Both ATNN-1 and ATNN-2 construct the stronger spatial relationship between patches than the matrix nuclear norm. Regularized by ATNN-1 and ATNN-2 respectively, the derived two LRTE algorithms are implemented through the adaptive singular-value thresholding with global optimal guarantee. Then, we embed the two algorithms into a residual-based iterative framework to perform nonlocal image denoising. Experiments validate the rationality of our tensor low-rank assumption, and the denoising results demonstrate that our proposed two methods are exceeding the state-of-the-art methods, both visually and quantitatively.
关键词Nonlocal Self-similarity Low-rank Tensor Estimation Singular-value Thresholding Tensor Nuclear Norm
WOS标题词Science & Technology ; Technology
DOI10.1007/s00521-015-2050-5
关键词[WOS]MATRIX COMPLETION ; ITERATIVE REGULARIZATION ; DECOMPOSITION ; ALGORITHM ; OPTIMIZATION ; RESTORATION ; FRAMEWORK ; SHRINKAGE
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000422933800002
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12260
专题精密感知与控制研究中心_精密感知与控制
通讯作者Chenyang Zhang
作者单位1.Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Chenyang,Hu, Wenrui,Jin, Tianyu,et al. Nonlocal image denoising via adaptive tensor nuclear norm minimization[J]. NEURAL COMPUTING & APPLICATIONS,2018,29(1):3-19.
APA Zhang, Chenyang,Hu, Wenrui,Jin, Tianyu,Mei, Zhonglei,&Chenyang Zhang.(2018).Nonlocal image denoising via adaptive tensor nuclear norm minimization.NEURAL COMPUTING & APPLICATIONS,29(1),3-19.
MLA Zhang, Chenyang,et al."Nonlocal image denoising via adaptive tensor nuclear norm minimization".NEURAL COMPUTING & APPLICATIONS 29.1(2018):3-19.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
wtnnm_online_pub.pdf(2531KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Chenyang]的文章
[Hu, Wenrui]的文章
[Jin, Tianyu]的文章
百度学术
百度学术中相似的文章
[Zhang, Chenyang]的文章
[Hu, Wenrui]的文章
[Jin, Tianyu]的文章
必应学术
必应学术中相似的文章
[Zhang, Chenyang]的文章
[Hu, Wenrui]的文章
[Jin, Tianyu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: wtnnm_online_pub.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。