A neural network framework for relation extraction: Learning entity semantic and relation pattern
Zheng, Suncong1; Xu, Jiaming1; Zhou, Peng1; Bao, Hongyun1; Qi, Zhenyu1; Xu, Bo1,2; bao hongyun
2016-12-15
发表期刊KNOWLEDGE-BASED SYSTEMS
卷号114期号:1页码:12-23
文章类型Article
摘要Relation extraction is to identify the relationship of two given entities in the text. It is an important step in the task of knowledge extraction. Most conventional methods for the task of relation extraction focus on designing effective handcrafted features or learning a semantic representation of the whole sentence. Sentences with the same relationship always share the similar expressions. Besides, the semantic properties of given entities can also help to distinguish some confusing relations. Based on the above observations, we propose a neural network based framework for relation classification. It can simultaneously learn the relation pattern's information and the semantic properties of given entities. In this framework, we explore two specific models: the CNN-based model and LSTM-based model. We conduct experiments on two public datasets: the SemEval-2010 Task8 dataset and the ACE05 dataset. The proposed method achieves the state-of-the-art result without using any external information. Additionally, the experimental results also show that our approach can represent the semantic relationship of the given entities effectively. (C) 2016 Elsevier B.V. All rights reserved.
关键词Relation Extraction Deep Neural Network Convolutional Neural Network Entity Embedding Keywords Extraction
WOS标题词Science & Technology ; Technology
DOI10.1016/j.knosys.2016.09.019
收录类别SCI
语种英语
项目资助者National High Technology Research and Development Program of China (863 Program)(2015AA015402) ; Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02070005) ; National Natural Science Foundation(71402178 ; 61602479)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000389396800002
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12344
专题数字内容技术与服务研究中心_听觉模型与认知计算
通讯作者bao hongyun
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100864, Peoples R China
2.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Suncong,Xu, Jiaming,Zhou, Peng,et al. A neural network framework for relation extraction: Learning entity semantic and relation pattern[J]. KNOWLEDGE-BASED SYSTEMS,2016,114(1):12-23.
APA Zheng, Suncong.,Xu, Jiaming.,Zhou, Peng.,Bao, Hongyun.,Qi, Zhenyu.,...&bao hongyun.(2016).A neural network framework for relation extraction: Learning entity semantic and relation pattern.KNOWLEDGE-BASED SYSTEMS,114(1),12-23.
MLA Zheng, Suncong,et al."A neural network framework for relation extraction: Learning entity semantic and relation pattern".KNOWLEDGE-BASED SYSTEMS 114.1(2016):12-23.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
kbs.pdf(1872KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Suncong]的文章
[Xu, Jiaming]的文章
[Zhou, Peng]的文章
百度学术
百度学术中相似的文章
[Zheng, Suncong]的文章
[Xu, Jiaming]的文章
[Zhou, Peng]的文章
必应学术
必应学术中相似的文章
[Zheng, Suncong]的文章
[Xu, Jiaming]的文章
[Zhou, Peng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: kbs.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。