Industrial Big Data Analytics: Challenges, Methodologies, and Applications
Wang JP(王军平); JUNPING WANG
2016-10
发表期刊IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
期号11页码:1101-1110
摘要While manufacturers have been generating highly
distributed data from various systems, devices and applications, a
number of challenges in both data management and data analysis
require new approaches to support the big data era. These
challenges for industrial big data analytics is real-time analysis
and decision-making from massive heterogeneous data sources in
manufacturing space. This survey presents new concepts, methodologies,
and applications scenarios of industrial big data analytics,
which can provide dramatic improvements in velocity and veracity
problem solving. We focus on five important methodologies of
industrial big data analytics: 1) Highly distributed industrial data
ingestion: access and integrate to highly distributed data sources
from from various systems, devices and applications; 2) Industrial
big data repository: cope with sampling biases and heterogeneity,
and store different data formats and structures; 3) Large-scale
industrial data management: organizes massive heterogeneous
data and share large-scale data; 4) Industrial data analytics: track
data provenance, from data generation through data preparation;
5) Industrial data governance: ensures data trust, integrity and
security. For each phase, we introduce to current research in
industries and academia, and discusses challenges and potential
solutions. We also examine the typical applications of industrial
big data, including smart factory visibility, machine fleet, energy
management, proactive maintenance, and just in time supply
chain. These discussions aim to understand the value of industrial
big data. Lastly, this survey is concluded with a discussion of open
problems and future directions.
关键词Industry 4.0 Cloud Robotics Industrial Big Data Predictive Manufacturing
收录类别SCI
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12346
专题精密感知与控制研究中心_人工智能与机器学习
通讯作者JUNPING WANG
作者单位Laboratory of Precision Sensing and Control Center, Institute of Automation, Chinese Academy
推荐引用方式
GB/T 7714
Wang JP,JUNPING WANG. Industrial Big Data Analytics: Challenges, Methodologies, and Applications[J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING,2016(11):1101-1110.
APA Wang JP,&JUNPING WANG.(2016).Industrial Big Data Analytics: Challenges, Methodologies, and Applications.IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING(11),1101-1110.
MLA Wang JP,et al."Industrial Big Data Analytics: Challenges, Methodologies, and Applications".IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING .11(2016):1101-1110.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Industrial Big Data (3378KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang JP(王军平)]的文章
[JUNPING WANG]的文章
百度学术
百度学术中相似的文章
[Wang JP(王军平)]的文章
[JUNPING WANG]的文章
必应学术
必应学术中相似的文章
[Wang JP(王军平)]的文章
[JUNPING WANG]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Industrial Big Data Analytics Challenges, Methodologies, and Applications.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。