CASIA OpenIR  > 模式识别国家重点实验室  > 图像与视频分析
Learning Multi-view Deep Features for Small Object Retrieval in Surveillance Scenarios
Haiyun Guo1; Jinqiao Wang1; Min Xu2; Zheng-jun Zha3; Hanqing Lu1
2015
Conference NameACM Multimedia
Source PublicationACM Multimedia
Conference Date2015.10.26-30
Conference PlaceAustralia, Brisbane
AbstractLearning Multi-view Deep Features for Small Object Retrieval in Surveillance Scenarios
KeywordObject Retrieval
Document Type会议论文
Identifierhttp://ir.ia.ac.cn/handle/173211/12449
Collection模式识别国家重点实验室_图像与视频分析
Corresponding AuthorJinqiao Wang
Affiliation1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.GBDTC, School of Computing and Communications, University of Technology, Sydney, Australia
3.Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China
Recommended Citation
GB/T 7714
Haiyun Guo,Jinqiao Wang,Min Xu,et al. Learning Multi-view Deep Features for Small Object Retrieval in Surveillance Scenarios[C],2015.
Files in This Item: Download All
File Name/Size DocType Version Access License
Learning Multi-view (995KB)会议论文 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Haiyun Guo]'s Articles
[Jinqiao Wang]'s Articles
[Min Xu]'s Articles
Baidu academic
Similar articles in Baidu academic
[Haiyun Guo]'s Articles
[Jinqiao Wang]'s Articles
[Min Xu]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Haiyun Guo]'s Articles
[Jinqiao Wang]'s Articles
[Min Xu]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Learning Multi-view Deep Features for Small Object Retrieval in Surveillance Scenarios.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.