On Equivalence of l1 Norm Based Basic Sparse Representation Problems
Jiang, Rui2; Qiao, Hong2; Zhang, Bo1; Jiang R(姜锐)
2015-09
会议名称IEEE Conference of Signal Processing, Communications and Computing (ICSPCC), 2015
会议录名称Proceedings of IEEE Conference of Signal Processing, Communications and Computing (ICSPCC), 2015
会议日期September 19-22, 2015
会议地点Ningbo, Zhejiang, China
摘要
The l1 norm regularization problem, the l1 norm minimization problem and the l1 norm constraint problem are known collectively as the l1 norm based Basic Sparse
Representation Problems (BSRPs), and have been popular basic models in the field of signal processing and machine learning. The equivalence of the above three problems is one of the crucial bases for the corresponding algorithms design. However, to the best our knowledge, this equivalence issue has not been addressed appropriately in the existing literature. In this paper, we will give a rigorous proof of the equivalence of the three l1 norm based BSRPs in the case when the dictionary is an overcomplete and row full rank matrix.
关键词Equivalence L1 Norm Regularization Problem L1 Norm Minimization Problem L1 Norm Constraint Problem
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12464
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
通讯作者Jiang R(姜锐)
作者单位1.Chinese Acad Sci, LSEC, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Rui,Qiao, Hong,Zhang, Bo,et al. On Equivalence of l1 Norm Based Basic Sparse Representation Problems[C],2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2573FinalPaper.pdf(261KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Rui]的文章
[Qiao, Hong]的文章
[Zhang, Bo]的文章
百度学术
百度学术中相似的文章
[Jiang, Rui]的文章
[Qiao, Hong]的文章
[Zhang, Bo]的文章
必应学术
必应学术中相似的文章
[Jiang, Rui]的文章
[Qiao, Hong]的文章
[Zhang, Bo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2573FinalPaper.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。