Manifold Regularized Multi-task Learning
Yang, Peipei; Zhang, Xu-Yao; Huang, Kaizhu; Liu, Cheng-Lin
2012-11
会议名称International Conference on Neural Information Processing
会议录名称19th International Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part III
会议日期2012-11-12
会议地点Doha, Qatar
摘要Multi-task learning (MTL) has drawn a lot of attentions in machine learning. By training multiple tasks simultaneously, information can be better shared across tasks. This leads to significant performance improvement in many problems. However, most existing methods assume that all tasks are related or their relationship follows a simple and specified structure. In this paper, we propose a novel manifold regularized framework for multi-task learning. Instead of assuming simple relationship among tasks, we propose to learn task decision functions as well as a manifold structure from data simultaneously. As manifold could be arbitrarily complex, we show that our proposed framework can contain many recent MTL models, e.g. RegMTL and cCMTL, as special cases. The framework can be solved by alternatively learning all tasks and the manifold structure. In particular, learning all tasks with the manifold regularization can be solved as a single-task learning problem, while the manifold structure can be obtained by successive Bregman projection on a convex feasible set. On both synthetic and real datasets, we show that our method can outperform the other competitive methods.
关键词Multi-task Learning Manifold Learning Laplacian
DOI10.1007/978-3-642-34487-9_64
引用统计
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12501
专题模式识别国家重点实验室_模式分析与学习
通讯作者Huang, Kaizhu
作者单位National Laboratory of Pattern Recognition
推荐引用方式
GB/T 7714
Yang, Peipei,Zhang, Xu-Yao,Huang, Kaizhu,et al. Manifold Regularized Multi-task Learning[C],2012.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
chp%3A10.1007%2F978-(255KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Peipei]的文章
[Zhang, Xu-Yao]的文章
[Huang, Kaizhu]的文章
百度学术
百度学术中相似的文章
[Yang, Peipei]的文章
[Zhang, Xu-Yao]的文章
[Huang, Kaizhu]的文章
必应学术
必应学术中相似的文章
[Yang, Peipei]的文章
[Zhang, Xu-Yao]的文章
[Huang, Kaizhu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: chp%3A10.1007%2F978-3-642-34487-9_64.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。