CASIA OpenIR  > 09年以前成果
A comparative study of two modeling approaches in neural networks
Xu, ZB; Qiao, H; Peng, JG; Zhang, B
2004-01
发表期刊NEURAL NETWORKS
卷号17期号:1页码:73-85
摘要
; The neuron state modeling and the local field modeling provides two fundamental modeling approaches to neural network research, based on which a neural network system can be called either as a static neural network model or as a local field neural network model. These two models are theoretically compared in terms of their trajectory, transformation property, equilibrium correspondence property, nontrivial attractive manifold property, global convergence as well as stability in many different senses. The comparison reveals an important stability invariance property of the two models in the sense that the stability (in any sense) of the static model is equivalent to that of a subsystem deduced from the local field model when restricted to a specific manifold. Such stability invariance property lays a sound theoretical foundation of validity of a useful, cross-fertilization type stability analysis methodology for various neural network models. (C) 2003 Elsevier Ltd. All rights reserved.
关键词Static Neural Network Modeling Local Field Neural Network Modeling Recurrent Neural Networks Stability Analysis Asymptotic Stability Exponential Stability Global Convergence Globally Attractive
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12573
专题09年以前成果
通讯作者Xu, ZB
作者单位Coventry Univ, Sch Math & Informat Sci
推荐引用方式
GB/T 7714
Xu, ZB,Qiao, H,Peng, JG,et al. A comparative study of two modeling approaches in neural networks[J]. NEURAL NETWORKS,2004,17(1):73-85.
APA Xu, ZB,Qiao, H,Peng, JG,&Zhang, B.(2004).A comparative study of two modeling approaches in neural networks.NEURAL NETWORKS,17(1),73-85.
MLA Xu, ZB,et al."A comparative study of two modeling approaches in neural networks".NEURAL NETWORKS 17.1(2004):73-85.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, ZB]的文章
[Qiao, H]的文章
[Peng, JG]的文章
百度学术
百度学术中相似的文章
[Xu, ZB]的文章
[Qiao, H]的文章
[Peng, JG]的文章
必应学术
必应学术中相似的文章
[Xu, ZB]的文章
[Qiao, H]的文章
[Peng, JG]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。