A high performance neural network for solving nonlinear programming problems with hybrid constraints
Tao, Q; Cao, JD; Xue, MS; Qiao, H
2001-09-17
发表期刊PHYSICS LETTERS A
卷号288期号:2页码:88-94
摘要A continuous neural network is proposed in this Letter for solving optimization problems. It not only can solve nonlinear programming problems with the constraints of equality and inequality, but also has a higher performance. The main advantage of the network is that it is an extension of Newton's gradient method for constrained problems, the dynamic behavior of the network under special constraints and the convergence rate can be investigated. Furthermore, the proposed network is simpler than the existing networks even for solving positive definite quadratic programming problems. The network considered is constrained by a projection operator on a convex set. The advanced performance of the proposed network is demonstrated by means of simulation of several numerical examples. (C) 2001 Elsevier Science B.V. All rights reserved.
关键词Nonlinear Programming Problem Neural Network Energy Function Gradient Method Global Asymptotic Stability
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12581
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
通讯作者Tao, Q
作者单位Univ Sci & Technol China, Dept Automat
推荐引用方式
GB/T 7714
Tao, Q,Cao, JD,Xue, MS,et al. A high performance neural network for solving nonlinear programming problems with hybrid constraints[J]. PHYSICS LETTERS A,2001,288(2):88-94.
APA Tao, Q,Cao, JD,Xue, MS,&Qiao, H.(2001).A high performance neural network for solving nonlinear programming problems with hybrid constraints.PHYSICS LETTERS A,288(2),88-94.
MLA Tao, Q,et al."A high performance neural network for solving nonlinear programming problems with hybrid constraints".PHYSICS LETTERS A 288.2(2001):88-94.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Q]的文章
[Cao, JD]的文章
[Xue, MS]的文章
百度学术
百度学术中相似的文章
[Tao, Q]的文章
[Cao, JD]的文章
[Xue, MS]的文章
必应学术
必应学术中相似的文章
[Tao, Q]的文章
[Cao, JD]的文章
[Xue, MS]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。