Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks
Qiao, H; Peng, J; Xu, ZB
2001-03
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS
卷号12期号:2页码:360-370
摘要In this paper, a new concept called nonlinear measure is introduced to quantify stability of nonlinear systems in the way similar to the matrix measure for stability of linear systems. Based on the new concept, a novel approach for stability analysis of neural networks is developed. With this approach, a series of new sufficient conditions for global and focal exponential stability of Hopfield type neural networks is presented, which generalizes those existing results. By means of the introduced nonlinear measure, the exponential convergence rate of the neural networks to stable equilibrium point is estimated, and, for local stability, the attraction region of the stable equilibrium point is characterized. The developed approach tan be generalized to stability analysis of other general nonlinear systems.
关键词Global Exponential Stability Hopfield-type Neural Networks Local Exponential Stability Matrix Measure Nonlinear Measures
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12583
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
通讯作者Qiao, H
作者单位City Univ Hong Kong, Dept Mfg Engn & Engn Management
推荐引用方式
GB/T 7714
Qiao, H,Peng, J,Xu, ZB. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS,2001,12(2):360-370.
APA Qiao, H,Peng, J,&Xu, ZB.(2001).Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks.IEEE TRANSACTIONS ON NEURAL NETWORKS,12(2),360-370.
MLA Qiao, H,et al."Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks".IEEE TRANSACTIONS ON NEURAL NETWORKS 12.2(2001):360-370.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiao, H]的文章
[Peng, J]的文章
[Xu, ZB]的文章
百度学术
百度学术中相似的文章
[Qiao, H]的文章
[Peng, J]的文章
[Xu, ZB]的文章
必应学术
必应学术中相似的文章
[Qiao, H]的文章
[Peng, J]的文章
[Xu, ZB]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。