Semantic Feature Mining for Video Event Understanding
Yang, Xiaoshan; Zhang, Tianzhu; Xu, Changsheng
2016-08-01
发表期刊ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
卷号12期号:4页码:55:1-55:22
文章类型Article
摘要Content-based video understanding is extremely difficult due to the semantic gap between low-level vision signals and the various semantic concepts (object, action, and scene) in videos. Though feature extraction from videos has achieved significant progress, most of the previous methods rely only on low-level features, such as the appearance and motion features. Recently, visual-feature extraction has been improved significantly with machine-learning algorithms, especially deep learning. However, there is still not enough work focusing on extracting semantic features from videos directly. The goal of this article is to adopt unlabeled videos with the help of text descriptions to learn an embedding function, which can be used to extract more effective semantic features from videos when only a few labeled samples are available for video recognition. To achieve this goal, we propose a novel embedding convolutional neural network (ECNN). We evaluate our algorithm by comparing its performance on three challenging benchmarks with several popular state-of-the-art methods. Extensive experimental results show that the proposed ECNN consistently and significantly outperforms the existing methods.
关键词Video Recognition Event
WOS标题词Science & Technology ; Technology
DOI10.1145/2962719
关键词[WOS]RECOGNITION ; IMAGES ; TEXT
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61225009 ; National Basic Research Program of China(2012CB316304) ; Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(IDHT20140224) ; 61303173 ; 61432019 ; 61572498 ; 61532009 ; 61472379 ; 61572296)
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000382877500009
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12631
专题模式识别国家重点实验室_多媒体计算与图形学
作者单位National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Yang, Xiaoshan,Zhang, Tianzhu,Xu, Changsheng. Semantic Feature Mining for Video Event Understanding[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2016,12(4):55:1-55:22.
APA Yang, Xiaoshan,Zhang, Tianzhu,&Xu, Changsheng.(2016).Semantic Feature Mining for Video Event Understanding.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,12(4),55:1-55:22.
MLA Yang, Xiaoshan,et al."Semantic Feature Mining for Video Event Understanding".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 12.4(2016):55:1-55:22.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Semantic Feature Min(910KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Xiaoshan]的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
百度学术
百度学术中相似的文章
[Yang, Xiaoshan]的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
必应学术
必应学术中相似的文章
[Yang, Xiaoshan]的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Semantic Feature Mining for Video Event Understanding.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。