CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
SERVE: Soft and Equalized Residual VEctors for image retrieval
Li, Jun1; Xu, Chang2; Gong, Mingming3; Xing, Junliang4; Yang, Wankou1; Sun, Changyin1
2016-09-26
发表期刊NEUROCOMPUTING
卷号207期号:0页码:202-212
文章类型Article
摘要In the last decade, a wide variety of image signatures, e.g., Bag-of-Visual-Words (BOVW), Fisher Vector (FV), and Vector of Locally Aggregated Descriptor (VLAD), have been developed for effective image retrieval. These image signatures, however, are either computationally expensive or simplified for the purpose of trading accuracy for efficiency. To simultaneously guarantee efficiency and effectiveness, we propose a novel image signature termed Soft and Equalized Residual VEctors (SERVE) which is more discriminatively formulated and maintains higher accuracy. It improves VLAD by encoding the variability in within-cluster feature points into the summation of Residual Vectors.(RV) while manifesting superiority in computational efficiency over FV. To find the latent low-dimensional manifolds underlying in the SERVE feature space, we propose to partition the original feature space into separate subspaces by random projections and employ multi-graph embedding to obtain additional performance gain. In particular, we make use of two fusion strategies for graph ensemble to generate a holistic representation. Extensive empirical studies carried out on the three retrieval-specific public benchmarks reveal that our method outperforms existing state-of-the-art methods and provides a promising paradigm for the image retrieval task. (C) 2016 Published by Elsevier B.V.
关键词Serve Manifolds Multi-graph Embedding Graph Ensemble Image Retrieval
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2016.04.047
关键词[WOS]OBJECT RETRIEVAL ; RELEVANCE FEEDBACK ; RE-RANKING ; REPRESENTATION ; FEATURES ; DATABASE ; VLAD
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61473086 ; Natural Science Foundation of Jiangsu Province(BK20140566 ; 61375001) ; BK20150470)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000382794500018
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12647
专题模式识别国家重点实验室_视频内容安全
作者单位1.Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
2.Peking Univ, Sch Elect Engn & Comp Sci, Minist Educ, Key Lab Machine Percept, Beijing 100871, Peoples R China
3.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
4.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Jun,Xu, Chang,Gong, Mingming,et al. SERVE: Soft and Equalized Residual VEctors for image retrieval[J]. NEUROCOMPUTING,2016,207(0):202-212.
APA Li, Jun,Xu, Chang,Gong, Mingming,Xing, Junliang,Yang, Wankou,&Sun, Changyin.(2016).SERVE: Soft and Equalized Residual VEctors for image retrieval.NEUROCOMPUTING,207(0),202-212.
MLA Li, Jun,et al."SERVE: Soft and Equalized Residual VEctors for image retrieval".NEUROCOMPUTING 207.0(2016):202-212.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
NC16SERVE.pdf(2902KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jun]的文章
[Xu, Chang]的文章
[Gong, Mingming]的文章
百度学术
百度学术中相似的文章
[Li, Jun]的文章
[Xu, Chang]的文章
[Gong, Mingming]的文章
必应学术
必应学术中相似的文章
[Li, Jun]的文章
[Xu, Chang]的文章
[Gong, Mingming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: NC16SERVE.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。