Using reinforcement learning techniques to solve continuous-time non-linear optimal tracking problem without system dynamics
Zhu, Yuanheng1; Zhao, Dongbin1; Li, Xiangjun2
2016-08-08
发表期刊IET CONTROL THEORY AND APPLICATIONS
卷号10期号:12页码:1339-1347
文章类型Article
摘要The optimal tracking of non-linear systems without knowing system dynamics is an important and intractable problem. Based on the framework of reinforcement learning (RL) and adaptive dynamic programming, a model-free adaptive optimal tracking algorithm is proposed in this study. After constructing an augmented system with the tracking errors and the reference states, the tracking problem is converted to a regulation problem with respect to the new system. Several RL techniques are synthesised to form a novel algorithm which learns the optimal solution online in real time without any information of the system dynamics. Continuous adaptation laws are defined by the current observations and the past experience. The convergence is guaranteed by Lyapunov analysis. Two simulations on a linear and a non-linear systems demonstrate the performance of the proposed approach.
关键词Nonlinear Control Systems Continuous Time Systems Learning (Artificial Intelligence) Optimal Control Dynamic Programming Lyapunov Methods Linear Systems Reinforcement Learning Continuous-time Problem Nonlinear Optimal Tracking Problem Adaptive Dynamic Programming Model-free Adaptive Optimal Tracking Algorithm Lyapunov Analysis Linear System
WOS标题词Science & Technology ; Technology
DOI10.1049/iet-cta.2015.0769
关键词[WOS]ADAPTIVE OPTIMAL-CONTROL ; UNKNOWN DYNAMICS ; POLICY ITERATION ; LINEAR-SYSTEMS ; ALGORITHM
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China (NSFC)(61273136 ; Beiing Nova Program(Z141101001814094) ; Science and Technology Foundation of SGCC(DG71-14-032) ; 61573353 ; 61533017)
WOS研究方向Automation & Control Systems ; Engineering ; Instruments & Instrumentation
WOS类目Automation & Control Systems ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:000381410000004
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12655
专题复杂系统管理与控制国家重点实验室_深度强化学习
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.China Elect Power Res Inst, Elect Engn & New Mat Dept, Beijing 100192, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Yuanheng,Zhao, Dongbin,Li, Xiangjun. Using reinforcement learning techniques to solve continuous-time non-linear optimal tracking problem without system dynamics[J]. IET CONTROL THEORY AND APPLICATIONS,2016,10(12):1339-1347.
APA Zhu, Yuanheng,Zhao, Dongbin,&Li, Xiangjun.(2016).Using reinforcement learning techniques to solve continuous-time non-linear optimal tracking problem without system dynamics.IET CONTROL THEORY AND APPLICATIONS,10(12),1339-1347.
MLA Zhu, Yuanheng,et al."Using reinforcement learning techniques to solve continuous-time non-linear optimal tracking problem without system dynamics".IET CONTROL THEORY AND APPLICATIONS 10.12(2016):1339-1347.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
J2016.IETCTA-ZhuZhao(976KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Yuanheng]的文章
[Zhao, Dongbin]的文章
[Li, Xiangjun]的文章
百度学术
百度学术中相似的文章
[Zhu, Yuanheng]的文章
[Zhao, Dongbin]的文章
[Li, Xiangjun]的文章
必应学术
必应学术中相似的文章
[Zhu, Yuanheng]的文章
[Zhao, Dongbin]的文章
[Li, Xiangjun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: J2016.IETCTA-ZhuZhaoLi.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。