CASIA OpenIR  > 智能感知与计算研究中心
Global and Local Training for Moving Object Classification in Surveillance-Oriented Scene
Xin Zhao; Jianwei Ding; Kaiqi Huang; Tieniu Tan
2011
会议名称The First Asian Conference on Pattern Recognition
会议录名称Pattern Recognition, 2011
页码681-685
会议日期2011
会议地点Beijing, China
摘要This paper presents a new training framework for multi-class moving object classification in surveillance-oriented scene. In many practical multi-class classification tasks, the instances are close to each other in the input feature space when they have similar features. These instances may have different class labels. Since the moving objects may have various view and shape, the above phenomenon is common in multi-class moving object classification. In our framework, firstly the input feature space is divided into several local clusters. Then, global training and local training are carried out sequential with an efficient online learning based algorithm. The induced global classifier is used to assign candidate instances to the most reliable clusters. Meanwhile, the trained local classifiers within those clusters can determine which classes the candidate instances belong to. Our experimental results illustrate the effectiveness of our method for moving object classification in surveillance-oriented scene.
关键词Image Classification   image Motion Analysis   learning (Artificial Intelligence
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12694
专题智能感知与计算研究中心
通讯作者Kaiqi Huang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Xin Zhao,Jianwei Ding,Kaiqi Huang,et al. Global and Local Training for Moving Object Classification in Surveillance-Oriented Scene[C],2011:681-685.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xin Zhao]的文章
[Jianwei Ding]的文章
[Kaiqi Huang]的文章
百度学术
百度学术中相似的文章
[Xin Zhao]的文章
[Jianwei Ding]的文章
[Kaiqi Huang]的文章
必应学术
必应学术中相似的文章
[Xin Zhao]的文章
[Jianwei Ding]的文章
[Kaiqi Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。