Pedestrian detection with local feature assistant
Xu, Y.W.; Cao, X.B.; Qiao, H.
2007
会议名称2007 IEEE International Conference on Control and Automation, ICCA 2007
会议录名称2007 IEEE International Conference on Control and Automation
会议日期30 May-1 June 2007
会议地点Guangzhou, China
摘要Until now, existing pedestrian detection systems usually use global features (e.g. appearance or motion) of human body to detect pedestrian; however, the detection rate needs to be improved in many situations since sometimes the global features can not be obtained. For example, a pedestrian may be partly covered by a car or his/her part may hide into the background. Therefore it is essential to adopt some local features of key parts of human body to assist pedestrian detection. In this paper, we propose a method using some key local features of human body to help pedestrian detection. Since the introduction of additional features will cost the system more time, in order to ensure the detection speed, we firstly use both appearance and motion global features of human body to select candidates, and then use local features of head and leg to do further confirmation. In the confirmation stage, we use three kinds of local features (head appearance, face color and hair color) to detect the head of each candidate; at the same time, we also choose some particular local appearance features to detect the leg. The experimental results indicate that this method can improve detection rate with almost the same detection speed; additionally, it can reduce false alarm sometimes.
关键词Pedestrain Detection Local Feature Adaboost Algorithm
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12813
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
通讯作者Xu, Y.W.
作者单位Dept. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China
推荐引用方式
GB/T 7714
Xu, Y.W.,Cao, X.B.,Qiao, H.. Pedestrian detection with local feature assistant[C],2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Y.W.]的文章
[Cao, X.B.]的文章
[Qiao, H.]的文章
百度学术
百度学术中相似的文章
[Xu, Y.W.]的文章
[Cao, X.B.]的文章
[Qiao, H.]的文章
必应学术
必应学术中相似的文章
[Xu, Y.W.]的文章
[Cao, X.B.]的文章
[Qiao, H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。