A cascaded classifier for pedestrian detection
Xu, Y. W.; Cao, X. B.; Qiao, H.; Wang, F. Y.
2006
会议名称IEEE Intelligent Vehicles Symposium
会议录名称2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM
会议日期JUN 13-15, 2006
会议地点Meguroku, JAPAN
摘要
In a pedestrian defection system, the most critical requirement is to quickly and reliably determine whether a candidate region contains a pedestrian. It is essential to design an effective classifier for pedestrian defection. Until now, most of the existing pedestrian detection systems only adopt a single and non-cascaded classifier However, since the scene is complex and the candidate regions are too many (in our experiments, there are more than 40,000 candidate regions); it is difficult to make the recognition both accurate and fast with such a non-cascaded classifier. 
 
In this paper, we present a cascaded classifier for pedestrian detection. The cascaded classifier combines a statistical learning classifier and a support vector machine classifier. The statistical learning classifier is used to select preliminary candidates, and then the Support vector machine classifier is applied to do a further acknowledgement. This kind of cascaded architecture can take both advantages of the two classifiers, so the detecting rate and defecting speed can be balanced Experimental results illustrate that the cascaded classifier is effective for a real-time detection.
关键词Image Classification / Learning (Artificial Intelligence / Object Detection / Support Vector Machines / Traffic Engineering Computing / Cascaded Classifier / Pedestrian Detection / Statistical Learning Classifier / Support Vector Machine Classifier / Cameras
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12857
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
通讯作者Xu, Y. W.
作者单位Univ Sci & Technol China, Dept Comp Sci & Technol
推荐引用方式
GB/T 7714
Xu, Y. W.,Cao, X. B.,Qiao, H.,et al. A cascaded classifier for pedestrian detection[C],2006.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Y. W.]的文章
[Cao, X. B.]的文章
[Qiao, H.]的文章
百度学术
百度学术中相似的文章
[Xu, Y. W.]的文章
[Cao, X. B.]的文章
[Qiao, H.]的文章
必应学术
必应学术中相似的文章
[Xu, Y. W.]的文章
[Cao, X. B.]的文章
[Qiao, H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。