A New Method Combining LDA and PLS for Dimension Reduction.
Tang, Liang; Peng, Silong; Bi, Yiming; Shan, Peng; Hu, Xiyuan,
2014
发表期刊PLos One
卷号9(5)期号:5页码:e96944-e96944 (SCI)
摘要Linear discriminant analysis (LDA) is a classical statistical approach for dimensionality reduction and classification. In many cases, the projection direction of the classical and extended LDA methods is not considered optimal for special applications. Herein we combine the Partial Least Squares (PLS) method with LDA algorithm, and then propose two improved methods, named LDA-PLS and ex-LDA-PLS, respectively. The LDA-PLS amends the projection direction of LDA by using the information of PLS, while ex-LDA-PLS is an extension of LDA-PLS by combining the result of LDA-PLS and LDA, making the result closer to the optimal direction by an adjusting parameter. Comparative studies are provided between the proposed methods and other traditional dimension reduction methods such as Principal component analysis (PCA), LDA and PLS-LDA on two data sets. Experimental results show that the proposed method can achieve better classification performance.
关键词Modified Split Hopkinson Torsional Bars Shear Localization Microstructural Evolution
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12907
专题智能制造技术与系统研究中心_多维数据分析
通讯作者Tang, Liang
推荐引用方式
GB/T 7714
Tang, Liang,Peng, Silong,Bi, Yiming,et al. A New Method Combining LDA and PLS for Dimension Reduction.[J]. PLos One,2014,9(5)(5):e96944-e96944 (SCI).
APA Tang, Liang,Peng, Silong,Bi, Yiming,Shan, Peng,&Hu, Xiyuan,.(2014).A New Method Combining LDA and PLS for Dimension Reduction..PLos One,9(5)(5),e96944-e96944 (SCI).
MLA Tang, Liang,et al."A New Method Combining LDA and PLS for Dimension Reduction.".PLos One 9(5).5(2014):e96944-e96944 (SCI).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A New Method Combini(770KB)期刊论文作者接受稿暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tang, Liang]的文章
[Peng, Silong]的文章
[Bi, Yiming]的文章
百度学术
百度学术中相似的文章
[Tang, Liang]的文章
[Peng, Silong]的文章
[Bi, Yiming]的文章
必应学术
必应学术中相似的文章
[Tang, Liang]的文章
[Peng, Silong]的文章
[Bi, Yiming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。