Solving integral equations with logarithmic kernel by using periodic quasi-wavelet
Chen, HL; Peng, SL,
2000
发表期刊Journal of Computational Mathematics
卷号18(5)期号:5页码:487-512 (SCI)
摘要In solving integral equations with logarithmic kernel which arises from the boundary integral equation reformulation of some boundary value problems for the two dimensional Helmholtz equation, we combine the Galerkin method with Beylkin's ([2]) approach, series of dense and nonsymmetric matrices may appear if we use traditional method. By appealing the so-called periodic quasi-wavelet (PQW in abbr.) ([5]), some of these matrices become diagonal, therefore we can find a algorithm with only O(K(m)2) arithmetic operations where m is the highest level. The Galerkin approximation has a polynomial rate of convergence.
关键词Periodic / quasi-wavelet / integral / equation / multiscale
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12909
专题智能制造技术与系统研究中心_多维数据分析
通讯作者Chen, HL
推荐引用方式
GB/T 7714
Chen, HL,Peng, SL,. Solving integral equations with logarithmic kernel by using periodic quasi-wavelet[J]. Journal of Computational Mathematics,2000,18(5)(5):487-512 (SCI).
APA Chen, HL,&Peng, SL,.(2000).Solving integral equations with logarithmic kernel by using periodic quasi-wavelet.Journal of Computational Mathematics,18(5)(5),487-512 (SCI).
MLA Chen, HL,et al."Solving integral equations with logarithmic kernel by using periodic quasi-wavelet".Journal of Computational Mathematics 18(5).5(2000):487-512 (SCI).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Solving integral equ(0KB)期刊论文作者接受稿暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, HL]的文章
[Peng, SL,]的文章
百度学术
百度学术中相似的文章
[Chen, HL]的文章
[Peng, SL,]的文章
必应学术
必应学术中相似的文章
[Chen, HL]的文章
[Peng, SL,]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。