CASIA OpenIR  > 智能制造技术与系统研究中心  > 多维数据分析
韩华; 王洪剑; 彭思龙; HanHua; WangHongjian; PengSilong,
Source Publication计算机辅助设计与图形学学报
Volume17(5) (EI)Issue:2005年05期Pages:941-947
AbstractSingle—.image zooming is an ill—.posed problem due to constrained information which may be provided.This paper pays attention to the similarity feature among local structures in an image which can be maintained across scale.Based on the feature,we propose a new method using similarity.By the method, first.we trv to find out all the similar structure sets under certain similarity criterion and obtain the degree of similarity.Then according to the degree sorted,image sequences in similarity are generated.As a result, we can apply known algorithms in the field of image sequence super—solution to solve the problem.This paper selects the MAP method and computes the optimal resolution by the steep—descending iterations. Several experiments are presented to demonstrate the effectiveness of the approach,especially in the area of IC,where the images are often with plenty of similar structures.
Keyword图像放大 / 图像超分辨率 / 局部结构相似 / 最大后验概率估计
Document Type期刊论文
Corresponding Author韩华
Recommended Citation
GB/T 7714
韩华,王洪剑,彭思龙,等. 基于局部结构相似性的单幅图像超分辨率算法[J]. 计算机辅助设计与图形学学报,2005,17(5) (EI)(2005年05期):941-947.
APA 韩华,王洪剑,彭思龙,HanHua,WangHongjian,&PengSilong,.(2005).基于局部结构相似性的单幅图像超分辨率算法.计算机辅助设计与图形学学报,17(5) (EI)(2005年05期),941-947.
MLA 韩华,et al."基于局部结构相似性的单幅图像超分辨率算法".计算机辅助设计与图形学学报 17(5) (EI).2005年05期(2005):941-947.
Files in This Item:
File Name/Size DocType Version Access License
基于局部结构相似性的单幅图像超分辨率算法(573KB)期刊论文作者接受稿暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[韩华]'s Articles
[王洪剑]'s Articles
[彭思龙]'s Articles
Baidu academic
Similar articles in Baidu academic
[韩华]'s Articles
[王洪剑]'s Articles
[彭思龙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[韩华]'s Articles
[王洪剑]'s Articles
[彭思龙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.