LMI Conditions for Global Stability of Fractional-Order Neural Networks
Zhang, Shuo1; Yu, Yongguang1; Yu, Junzhi2
2017-10-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号28期号:10页码:2423-2433
文章类型Article
摘要Fractional-order neural networks play a vital role in modeling the information processing of neuronal interactions. It is still an open and necessary topic for fractional-order neural networks to investigate their global stability. This paper proposes some simplified linear matrix inequality (LMI) stability conditions for fractional-order linear and nonlinear systems. Then, the global stability analysis of fractional-order neural networks employs the results from the obtained LMI conditions. In the LMI form, the obtained results include the existence and uniqueness of equilibrium point and its global stability, which simplify and extend some previous work on the stability analysis of the fractional-order neural networks. Moreover, a generalized projective synchronization method between such neural systems is given, along with its corresponding LMI condition. Finally, two numerical examples are provided to illustrate the effectiveness of the established LMI conditions.
关键词Fractional Order Generalized Projective Synchronization (Gps) Linear Matrix Inequality (Lmi) Neural Networks Stability
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2016.2574842
关键词[WOS]OPTIMIZATION PROBLEMS ; DISTRIBUTED DELAYS ; NONLINEAR-SYSTEMS ; TIME DELAYS ; SYNCHRONIZATION ; DISCRETE ; MODEL ; DYNAMICS ; NEURONS ; CHAOS
收录类别SCI
语种英语
项目资助者Fundamental Research Funds for the Central Universities(2016JBM070) ; National Natural Science Foundation of China(11371049 ; 61375102)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000411293200017
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13080
专题复杂系统管理与控制国家重点实验室_先进机器人
通讯作者Yu, Yongguang
作者单位1.Beijing Jiaotong Univ, Dept Math, Sch Sci, Beijing 100044, Peoples R China
2.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Shuo,Yu, Yongguang,Yu, Junzhi. LMI Conditions for Global Stability of Fractional-Order Neural Networks[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2017,28(10):2423-2433.
APA Zhang, Shuo,Yu, Yongguang,&Yu, Junzhi.(2017).LMI Conditions for Global Stability of Fractional-Order Neural Networks.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,28(10),2423-2433.
MLA Zhang, Shuo,et al."LMI Conditions for Global Stability of Fractional-Order Neural Networks".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 28.10(2017):2423-2433.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
85-LMI Conditions fo(3938KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Shuo]的文章
[Yu, Yongguang]的文章
[Yu, Junzhi]的文章
百度学术
百度学术中相似的文章
[Zhang, Shuo]的文章
[Yu, Yongguang]的文章
[Yu, Junzhi]的文章
必应学术
必应学术中相似的文章
[Zhang, Shuo]的文章
[Yu, Yongguang]的文章
[Yu, Junzhi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 85-LMI Conditions for Global Stability of Fractional-Order Neural Networks.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。