CASIA OpenIR  > 类脑智能研究中心
Multi-view Multi-stance Gait Identification
Maodi Hu; Yunhong Wang; Zhaoxiang Zhang; De Zhang
2011-09-11
会议名称IEEE International Conference on Image Processing
会议录名称ICIP 2011
会议日期11-14 September 2011
会议地点Brussels, Belgium
摘要View transformation in gait analysis has attracted more and more attentions recently. However, most of the existing methods are based on the entire gait dynamics, such as Gait Energy Image (GEI). And the distinctive characteristics of different walking phases are neglected. This paper proposes a multi-view multi-stance gait identification method using unified multi-view population Hidden Markov Models (pHMM-s), in which all the models share the same transition probabilities. Hence, the gait dynamics in each view can be normalized into fixed-length stances by Viterbi decoding. To optimize the view-independent and stance-independent identity vector, a multi-linear projection model is learned from tensor decomposition. The advantage of using tensor is that different types of information are integrated in the final optimal solution. Extensive experiments show that our algorithm achieves promising performances of multi-view gait identification even with incomplete gait cycles.
关键词Normalized Dynamics Multi-view Multi-stance Gait Identification
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/13281
专题类脑智能研究中心
通讯作者Zhaoxiang Zhang
推荐引用方式
GB/T 7714
Maodi Hu,Yunhong Wang,Zhaoxiang Zhang,et al. Multi-view Multi-stance Gait Identification[C],2011.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Maodi Hu]的文章
[Yunhong Wang]的文章
[Zhaoxiang Zhang]的文章
百度学术
百度学术中相似的文章
[Maodi Hu]的文章
[Yunhong Wang]的文章
[Zhaoxiang Zhang]的文章
必应学术
必应学术中相似的文章
[Maodi Hu]的文章
[Yunhong Wang]的文章
[Zhaoxiang Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。