Learning Relationship for Very High Resolution Image Change Detection
Huo, Chunlei1; Chen, Keming2; Ding, Kun1; Zhou, Zhixin3; Pan, Chunhong1
2016-08-01
发表期刊IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
卷号9期号:8页码:3384-3394
文章类型Article
摘要The difficulty of very high resolution image change detection lies in the low interclass separability between the changed class and the unchanged class. According to experiments, we found that this separability can be improved by mining the relationship contained in the training samples. Based on this observation, a supervised change detection approach is proposed in this paper based on relationship learning. The proposed approach begins with enriching the training samples based on their neighborhood relationship and label coherence; this relationship is then learned simultaneously with the classifier, and, finally, the latter classification performance benefits from the learned relationship. Experiments demonstrate the effectiveness of the proposed approach.
关键词Change Detection Distance Tuning Interclass Couple Intraclass Couple Relationship Learning Target Neighborhood
WOS标题词Science & Technology ; Technology ; Physical Sciences
DOI10.1109/JSTARS.2016.2569598
关键词[WOS]NEAREST-NEIGHBOR CLASSIFICATION ; VHR IMAGES ; PATTERN-CLASSIFICATION ; KERNEL ; ALGORITHMS ; MACHINE
收录类别SCI
语种英语
项目资助者Natural Science Foundation of China(91438105 ; 61375024 ; 61302170 ; 91338202)
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000384907200004
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13340
专题模式识别国家重点实验室_先进数据分析与学习
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
3.Beijing Inst Remote Sensing, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
Huo, Chunlei,Chen, Keming,Ding, Kun,et al. Learning Relationship for Very High Resolution Image Change Detection[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2016,9(8):3384-3394.
APA Huo, Chunlei,Chen, Keming,Ding, Kun,Zhou, Zhixin,&Pan, Chunhong.(2016).Learning Relationship for Very High Resolution Image Change Detection.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,9(8),3384-3394.
MLA Huo, Chunlei,et al."Learning Relationship for Very High Resolution Image Change Detection".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 9.8(2016):3384-3394.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Learning Relationshi(969KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huo, Chunlei]的文章
[Chen, Keming]的文章
[Ding, Kun]的文章
百度学术
百度学术中相似的文章
[Huo, Chunlei]的文章
[Chen, Keming]的文章
[Ding, Kun]的文章
必应学术
必应学术中相似的文章
[Huo, Chunlei]的文章
[Chen, Keming]的文章
[Ding, Kun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Learning Relationship for Very High Resolution Image Change Detection.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。