CASIA OpenIR  > 模式识别国家重点实验室  > 机器人视觉
Dynamic Parallel and Distributed Graph Cuts
Yu, Miao1,2; Shen, Shuhan1,3; Hu, Zhanyi1,3,4
2016-12-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号25期号:12页码:5511-5525
文章类型Article
摘要Graph cuts are widely used in computer vision. To speed up the optimization process and improve the scalability for large graphs, Strandmark and Kahl introduced a splitting method to split a graph into multiple subgraphs for parallel computation in both shared and distributed memory models. However, this parallel algorithm (the parallel BK-algorithm) does not have a polynomial bound on the number of iterations and is found to be non-convergent in some cases due to the possible multiple optimal solutions of its sub-problems. To remedy this non-convergence problem, in this paper, we first introduce a merging method capable of merging any number of those adjacent sub-graphs that can hardly reach agreement on their overlapping regions in the parallel BK-algorithm. Based on the pseudo-boolean representations of graph cuts, our merging method is shown to be effectively reused all the computed flows in these sub-graphs. Through both splitting and merging, we further propose a dynamic parallel and distributed graph cuts algorithm with guaranteed convergence to the globally optimal solutions within a predefined number of iterations. In essence, this paper provides a general framework to allow more sophisticated splitting and merging strategies to be employed to further boost performance. Our dynamic parallel algorithm is validated with extensive experimental results.
关键词Graph Cuts Parallel Computation Convergence Markov Random Field
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2016.2609819
关键词[WOS]MAXIMUM-FLOW PROBLEM ; MARKOV RANDOM-FIELDS ; ENERGY MINIMIZATION ; ALGORITHM
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61333015 ; 61421004 ; 61473292)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000388205100001
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13350
专题模式识别国家重点实验室_机器人视觉
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Zhongyuan Univ Technol, Zhengzhou 450007, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yu, Miao,Shen, Shuhan,Hu, Zhanyi. Dynamic Parallel and Distributed Graph Cuts[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(12):5511-5525.
APA Yu, Miao,Shen, Shuhan,&Hu, Zhanyi.(2016).Dynamic Parallel and Distributed Graph Cuts.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(12),5511-5525.
MLA Yu, Miao,et al."Dynamic Parallel and Distributed Graph Cuts".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.12(2016):5511-5525.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
TIP2016.pdf(2857KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Miao]的文章
[Shen, Shuhan]的文章
[Hu, Zhanyi]的文章
百度学术
百度学术中相似的文章
[Yu, Miao]的文章
[Shen, Shuhan]的文章
[Hu, Zhanyi]的文章
必应学术
必应学术中相似的文章
[Yu, Miao]的文章
[Shen, Shuhan]的文章
[Hu, Zhanyi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TIP2016.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。