A stacked contractive denoising auto-encoder for ECG signal denoising
Xiong, Peng1; Wang, Hongrui1,2; Liu, Ming2; Lin, Feng3; Hou, Zengguang4; Liu, Xiuling2
2016-12-01
发表期刊PHYSIOLOGICAL MEASUREMENT
卷号37期号:12页码:2214-2230
文章类型Article
摘要As a primary diagnostic tool for cardiac diseases, electrocardiogram ( ECG) signals are often contaminated by various kinds of noise, such as baseline wander, electrode contact noise and motion artifacts. In this paper, we propose a contractive denoising technique to improve the performance of current denoising auto-encoders (DAEs) for ECG signal denoising. Based on the Frobenius norm of the Jacobean matrix for the learned features with respect to the input, we develop a stacked contractive denoising auto-encoder (CDAE) to build a deep neural network (DNN) for noise reduction, which can significantly improve the expression of ECG signals through multi-level feature extraction. The proposed method is evaluated on ECG signals from the bench-marker MIT-BIH Arrhythmia Database, and the noises come from the MIT-BIH noise stress test database. The experimental results show that the new CDAE algorithm performs better than the conventional ECG denoising method, specifically with more than 2.40 dB improvement in the signal-to-noise ratio (SNR) and nearly 0.075 to 0.350 improvements in the root mean square error (RMSE).
关键词Electrocardiogram (Ecg) Denoising Auto-encoder (Dae) Baseline Wander Motion Artifacts Electrode Contact Noise
WOS标题词Science & Technology ; Life Sciences & Biomedicine ; Technology
DOI10.1088/0967-3334/37/12/2214
关键词[WOS]FILTERING FRAMEWORK ; AUTOENCODERS ; NETWORKS
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61473112) ; Foundation for Distinguished Young Scholars of Hebei Province(F2016201186) ; Natural Science Foundation of Hebei Province(F2015201112) ; Science and Technology Research Project for Universities and Colleges in Hebei Province(ZD2015067)
WOS研究方向Biophysics ; Engineering ; Physiology
WOS类目Biophysics ; Engineering, Biomedical ; Physiology
WOS记录号WOS:000389324000003
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13359
专题复杂系统管理与控制国家重点实验室_先进机器人
作者单位1.Yanshan Univ, Coll Elect & Informat Engn, Qinhuangdao, Peoples R China
2.Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Coll Elect & Informat Engn, Baoding, Peoples R China
3.Nanyang Technol Univ, Sch Comp Engn, Singapore, Singapore
4.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Xiong, Peng,Wang, Hongrui,Liu, Ming,et al. A stacked contractive denoising auto-encoder for ECG signal denoising[J]. PHYSIOLOGICAL MEASUREMENT,2016,37(12):2214-2230.
APA Xiong, Peng,Wang, Hongrui,Liu, Ming,Lin, Feng,Hou, Zengguang,&Liu, Xiuling.(2016).A stacked contractive denoising auto-encoder for ECG signal denoising.PHYSIOLOGICAL MEASUREMENT,37(12),2214-2230.
MLA Xiong, Peng,et al."A stacked contractive denoising auto-encoder for ECG signal denoising".PHYSIOLOGICAL MEASUREMENT 37.12(2016):2214-2230.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiong, Peng]的文章
[Wang, Hongrui]的文章
[Liu, Ming]的文章
百度学术
百度学术中相似的文章
[Xiong, Peng]的文章
[Wang, Hongrui]的文章
[Liu, Ming]的文章
必应学术
必应学术中相似的文章
[Xiong, Peng]的文章
[Wang, Hongrui]的文章
[Liu, Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。