Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children
Wen, Hongwei1,2,3; Liu, Yue5; Rekik, Islem7,8; Wang Shengpei1,2,3; Chen, Zhiqiang1,2,3; Zhang, Jishui6; Zhang, Yue5; Peng, Yun5; He, Huiguang1,2,3,4
2017-03-01
发表期刊PATTERN RECOGNITION
卷号63期号:*页码:601-611
文章类型Article
摘要Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. To date, TS diagnosis remains somewhat limited and studies using advanced diagnostic methods are of great importance. In this paper, we introduce an automatic classification framework for accurate identification of TS children based on multi-modal and multi-type features, which is robust and easy to implement. We present in detail the feature extraction, feature selection, and classifier training methods. In addition, in order to exploit complementary information revealed by different feature modalities, we integrate multi-modal image features using multiple kernel learning (MKL). The performance of our framework has been validated in classifying 44 TS children and 48 age-and gender-matched healthy children. When combining features using MKL, the classification accuracy reached 94.24% using nested cross-validation. Most discriminative brain regions were mostly located in the cortico-basal ganglia, frontal cortico-cortical circuits, which are thought to be highly related to TS pathology. These results show that our method is reliable for early TS diagnosis, and promising for prognosis and treatment outcome.
关键词Tourette Syndrome Dti Tbss Svm Mkl
WOS标题词Science & Technology ; Technology
DOI10.1016/j.patcog.2016.09.039
关键词[WOS]VOXEL-BASED MORPHOMETRY ; ALZHEIMERS-DISEASE ; FUNCTIONAL CONNECTIVITY ; WHITE-MATTER ; TIC SEVERITY ; ABNORMALITIES ; BRAIN ; SCALE ; CLASSIFICATION ; SELECTION
收录类别SCI ; SSCi
语种英语
项目资助者National Natural Science Foundation of China(61271151 ; Youth Innovation Promotion Association CAS ; Beijing Municipal Administration of Hospitals Incubating Program(PX2016035) ; Beijing Health System Top Level Health Technical Personnel Training Plan(2015-3-082) ; 91520202 ; 31271161)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000389785900051
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13369
专题复杂系统管理与控制国家重点实验室_影像分析与机器视觉
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
5.Capital Med Univ, Beijing Childrens Hosp, Dept Radiol, Beijing, Peoples R China
6.Capital Med Univ, Beijing Childrens Hosp, Dept Neurol, Beijing, Peoples R China
7.Univ N Carolina, Dept Radiol, Chapel Hill, NC USA
8.Univ N Carolina, BRIC, Chapel Hill, NC USA
推荐引用方式
GB/T 7714
Wen, Hongwei,Liu, Yue,Rekik, Islem,et al. Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children[J]. PATTERN RECOGNITION,2017,63(*):601-611.
APA Wen, Hongwei.,Liu, Yue.,Rekik, Islem.,Wang Shengpei.,Chen, Zhiqiang.,...&He, Huiguang.(2017).Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children.PATTERN RECOGNITION,63(*),601-611.
MLA Wen, Hongwei,et al."Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children".PATTERN RECOGNITION 63.*(2017):601-611.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
1-s2.0-S003132031630(1101KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wen, Hongwei]的文章
[Liu, Yue]的文章
[Rekik, Islem]的文章
百度学术
百度学术中相似的文章
[Wen, Hongwei]的文章
[Liu, Yue]的文章
[Rekik, Islem]的文章
必应学术
必应学术中相似的文章
[Wen, Hongwei]的文章
[Liu, Yue]的文章
[Rekik, Islem]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1-s2.0-S0031320316302813-main.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。