CASIA OpenIR  > 中国科学院分子影像重点实验室
Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis
Song, Jiangdian1,2; Liu, Zaiyi3; Zhong, Wenzhao4; Huang, Yanqi3; Ma, Zelan3; Dong, Di2,5; Liang, Changhong3; Tian, Jie2,5
2016-12-06
发表期刊Scientific Reports
卷号6期号:38282页码:1-9
文章类型Article
摘要This was a retrospective study to investigate the predictive and prognostic ability of quantitative computed tomography phenotypic features in patients with non-small cell lung cancer (NSCLC). 661 patients with pathological confirmed as NSCLC were enrolled between 2007 and 2014. 592 phenotypic descriptors was automatically extracted on the pre-therapy CT images. Firstly, support vector machine (SVM) was used to evaluate the predictive value of each feature for pathology and TNM clinical stage. Secondly, Cox proportional hazards model was used to evaluate the prognostic value of these imaging signatures selected by SVM which subjected to a primary cohort of 138 patients, and an external independent validation of 61 patients. The results indicated that predictive accuracy for histopathology, N staging, and overall clinical stage was 75.16%, 79.40% and 80.33%, respectively. Besides, Cox models indicated the signatures selected by SVM: "correlation of co-occurrence after wavelet transform" was significantly associated with overall survival in the two datasets (hazard ratio [HR]: 1.65, 95% confidence interval [CI]: 1.41-2.75, p = 0.010; and HR: 2.74, 95% CI: 1.10-6.85, p = 0.027, respectively). Our study indicates that the phenotypic features might provide some insight in metastatic potential or aggressiveness for NSCLC, which potentially offer clinical value in directing personalized therapeutic regimen selection for NSCLC.
关键词Radiomics
WOS标题词Science & Technology
DOI10.1038/srep38282
关键词[WOS]TEXTURE ANALYSIS ; TUMOR HETEROGENEITY ; SURVIVAL ; CHEMOTHERAPY ; FEATURES ; PREDICTION ; PARAMETERS ; CARCINOMA ; BIOMARKER ; NODULES
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(81227901 ; Guangdong Province-Chinese Academy of Science(2012B090400039) ; National Basic Research Program of China(61302025 ; Chinese Academy of Sciences Key deployment program(KGZD-EW-T03) ; Instrument Developing Project of the Chinese Academy of Sciences(YZ201502) ; 81501549 ; 61301002) ; 61231004 ; 81501616 ; 81301346)
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000389420800001
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13371
专题中国科学院分子影像重点实验室
作者单位1.Northeastern Univ, Sinodutch Biomed & Informat Engn Sch, Shenyang, Liaoning, Peoples R China
2.Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100190, Peoples R China
3.Guangdong Gen Hosp, Guangdong Acad Med Sci, Dept Radiol, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
4.Guangdong Acad Med Sci, Guangdong Lung Canc Inst, Guangdong Gen Hosp, 106 Zhongshan Er Lu, Guangzhou 510080, Peoples R China
5.Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Song, Jiangdian,Liu, Zaiyi,Zhong, Wenzhao,et al. Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis[J]. Scientific Reports,2016,6(38282):1-9.
APA Song, Jiangdian.,Liu, Zaiyi.,Zhong, Wenzhao.,Huang, Yanqi.,Ma, Zelan.,...&Tian, Jie.(2016).Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis.Scientific Reports,6(38282),1-9.
MLA Song, Jiangdian,et al."Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis".Scientific Reports 6.38282(2016):1-9.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2016_Srep_Songjiangd(585KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Jiangdian]的文章
[Liu, Zaiyi]的文章
[Zhong, Wenzhao]的文章
百度学术
百度学术中相似的文章
[Song, Jiangdian]的文章
[Liu, Zaiyi]的文章
[Zhong, Wenzhao]的文章
必应学术
必应学术中相似的文章
[Song, Jiangdian]的文章
[Liu, Zaiyi]的文章
[Zhong, Wenzhao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2016_Srep_Songjiangdian.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。