Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors
Wei, Qinglai1,2; Li, Benkai1; Song, Ruizhuo3
2018-04-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号29期号:4页码:1226-1238
文章类型Article
摘要In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
关键词Adaptive Critic Designs Adaptive Dynamic Programming (Adp) Approximate Dynamic Programming Generalized Policy Iteration (Gpi) Neural Networks Neurodynamic Programming Nonlinear Systems Optimal Control Reinforcement Learning
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2017.2661865
关键词[WOS]DYNAMIC-PROGRAMMING ALGORITHM ; ZERO-SUM GAMES ; NONLINEAR-SYSTEMS ; TRACKING CONTROL ; UNKNOWN DYNAMICS ; VALUE-ITERATION ; CONTROL SCHEME ; REINFORCEMENT ; DESIGN
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000427859600037
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13634
专题复杂系统管理与控制国家重点实验室_平行控制
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Wei, Qinglai,Li, Benkai,Song, Ruizhuo. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(4):1226-1238.
APA Wei, Qinglai,Li, Benkai,&Song, Ruizhuo.(2018).Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(4),1226-1238.
MLA Wei, Qinglai,et al."Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.4(2018):1226-1238.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
07866891.pdf(2475KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Qinglai]的文章
[Li, Benkai]的文章
[Song, Ruizhuo]的文章
百度学术
百度学术中相似的文章
[Wei, Qinglai]的文章
[Li, Benkai]的文章
[Song, Ruizhuo]的文章
必应学术
必应学术中相似的文章
[Wei, Qinglai]的文章
[Li, Benkai]的文章
[Song, Ruizhuo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 07866891.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。