CASIA OpenIR  > 类脑智能研究中心
Learning to Classify Fine-Grained Categories with Privileged Visual-Semantic Misalignment
Ke Chen; Zhaoxiang Zhang
2016-08-25
发表期刊IEEE Transactions on Big Data
卷号PP期号:99页码:2332-7790
摘要Image categorisation is an active yet challenging research topic in computer vision, which is to classify the images according to their semantic content. Recently, fine-grained object categorisation has attracted wide attention and remains difficult due to feature inconsistency caused by smaller inter-class and larger intra-class variation as well as large varying poses. Most of the existing frameworks focused on exploiting a more discriminative imagery representation or developing a more robust classification framework to mitigate the suffering. The concern has recently been paid to discovering the dependency across fine-grained class labels based on Convolutional Neural Networks. Encouraged by the success of semantic label embedding to discover the fine-grained class labels’ correlation, this paper exploits the misalignment between visual feature space and semantic label embedding space and incorporates it as a privileged information into a cost-sensitive learning framework. Owing to capturing both the variation of imagery feature representation and also the label correlation in the semantic label embedding space, such a visual-semantic misalignment can be employed to reflect the importance of instances, which is more informative that conventional cost-sensitivities. Experiment results demonstrate the effectiveness of the proposed framework on public fine-grained benchmarks with achieving superior performance to state-of-the-arts.
关键词Fine-grained Categorisation Cost-sensitive Learning Deep Feature Visual-semantic Alignment Multiclass Classification
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14033
专题类脑智能研究中心
通讯作者Zhaoxiang Zhang
推荐引用方式
GB/T 7714
Ke Chen,Zhaoxiang Zhang. Learning to Classify Fine-Grained Categories with Privileged Visual-Semantic Misalignment[J]. IEEE Transactions on Big Data,2016,PP(99):2332-7790.
APA Ke Chen,&Zhaoxiang Zhang.(2016).Learning to Classify Fine-Grained Categories with Privileged Visual-Semantic Misalignment.IEEE Transactions on Big Data,PP(99),2332-7790.
MLA Ke Chen,et al."Learning to Classify Fine-Grained Categories with Privileged Visual-Semantic Misalignment".IEEE Transactions on Big Data PP.99(2016):2332-7790.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ke Chen]的文章
[Zhaoxiang Zhang]的文章
百度学术
百度学术中相似的文章
[Ke Chen]的文章
[Zhaoxiang Zhang]的文章
必应学术
必应学术中相似的文章
[Ke Chen]的文章
[Zhaoxiang Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。